1 |
|
- A.
- B.
- C.
- D. diagonal matrix
|
2 |
If each element of a 3 × 3 matrix A is multiplied by 3, then the determinant of the resulting matrix is: |
- A. |A|<sup>3</sup>
- B. 27|A|
- C. 3|A|
- D. 9|A|
|
3 |
If any two rows of a square matrix are interchanged, the determinant of the resulting matrix: |
- A. is zero
- B. is multiplicative inverse of the determinant of the original matrix
- C. is additive inverse of the determinant the original matrix
- D. none of these
|
4 |
|
|
5 |
Minors and co-factors of the elements in a determinant are equal in magnitude but they may differ in: |
- A. order
- B. position
- C. sign
- D. symmetry
|
6 |
|
- A. scalar matrix
- B. diagonalmatrix
- C. lower triangularmatrix
- D. upper triangularmatrix
|
7 |
[0] is a: |
|
8 |
|
- A. 3×2
- B. 2×3
- C. 2×2
- D. 3×3
|
9 |
If A is non singular matrix then A<sup>t</sup> is: |
- A. singular
- B. nonsingular
- C. symmetric
- D. none
|
10 |
For a square matrix A, |A| equals: |
- A. A<sup>t</sup>
- B. |A<sup>t</sup>|
- C. -|A<sup>t</sup>|
- D. -A<sup>t</sup>
|