1 |
Minors and co-factors of the elements in a determinant are equal in magnitude but they may differ in: |
- A. order
- B. position
- C. sign
- D. symmetry
|
2 |
|
- A. 3
- B. -3
- C. 1/3
- D. -1/3
|
3 |
If A and B are two matrices, then: |
- A. A B = O
- B. AB = BA
- C. AB = I
- D. AB may not be defined
|
4 |
If a matrix A is symmetric as well as skew symmetric, then: |
- A. A is null matrix
- B. A is unit matrix
- C. A is triangular matrix
- D. A is diagonal matrix
|
5 |
|
|
6 |
|
- A. singular
- B. non-singular
- C. rectangular
- D. null
|
7 |
If each element of a 3 × 3 matrix A is multiplied by 3, then the determinant of the resulting matrix is: |
- A. |A|<sup>3</sup>
- B. 27|A|
- C. 3|A|
- D. 9|A|
|
8 |
The trivial solution of the homogeneous linear equations is: |
- A. (1, 0, 0)
- B. (0, 1, 0)
- C. (0, 0, 1)
- D. (0, 0, 0)
|
9 |
|
- A. 3×3
- B. 3×2
- C. 2×1
- D. 2×3
|
10 |
|
- A. scalar matrix
- B. diagonalmatrix
- C. triangularmatrix
- D. none of these
|