1 |
If A and B are two matrices, then: |
- A. A B = O
- B. AB = BA
- C. AB = I
- D. AB may not be defined
|
2 |
If A = [a<sub>ij</sub>], B = [b<sub>ij</sub>] and AB = 0 then: |
- A. A = 0
- B. B = 0
- C. either A = 0 or B = 0
- D. A & B not necessarily zero
|
3 |
A matrix of order m×1 is called: |
- A. row matrix
- B. column matrix
- C. identity matrix
- D. scalar matrix
|
4 |
Minors and co-factors of the elements in a determinant are equal in magnitude but they may differ in: |
- A. order
- B. position
- C. sign
- D. symmetry
|
5 |
|
|
6 |
|
|
7 |
|
- A. scalarmatrix
- B. diagonalmatrix
- C. lower triangularmatrix
- D. uppertriangularmatrix
|
8 |
If A is non singular matrix then A<sup>t</sup> is: |
- A. singular
- B. nonsingular
- C. symmetric
- D. none
|
9 |
If A is a square matrix order 3 × 3 the |kA| equals: |
- A. k |A|
- B. k<sup>2</sup>|A|
- C. k<sup>3</sup> |A|
- D. k<sup>4</sup> |A|
|
10 |
A<sup>-1</sup> exists if A is: |
- A. singular
- B. nonsingular
- C. symmetric
- D. none
|