1 

 A. T<sub>6</sub>
 B. T<sub>7</sub>
 C. T<sub>8</sub>
 D. T<sub>5</sub>

2 
If n is a positive integer, then the binomial coefficient equidistant form the beginning and the end in the expansion of (x+a)<sup>n</sup> are: 
 A. same
 B. not same
 C. additive inverse of each other
 D. none of these

3 
The middle terms of (x+y)<sup>23</sup> are: 
 A. T<sub>10</sub>,T<sub>11</sub>
 B. T<sub>11</sub>,T<sub>12</sub>
 C. T<sub>12</sub>,T<sub>13</sub>
 D. none of these

4 

 A. 2x
 B. x<sup>2</sup>
 C. 1
 D. none of these

5 
In binomial expansion of (a+b)<sup>n</sup>, n is positive integer the sum of odd coefficients equals: 
 A.
 B.
 C.
 D. none of these

6 
The middle term of (xy)<sup>18</sup> is: 
 A. 9th
 B. 10th
 C. 11th
 D. none of these

7 
The middle term in the expansion of (1+x)<sup>1/2</sup> is: 
 A. T<sub>2</sub>
 B. T<sub>3</sub>
 C. does not exist
 D. none of these

8 
In binomial expansion of (a+b)n, n is positive integer the sum of even coefficients equals: 
 A.
 B.
 C.
 D. none of these

9 
If a statement P(n) is true for n = 1 and truth of P(n) for n = k implies the truth of P(n) for n = k + 1, then P(n) is true for all: 
 A. integers n
 B. real numbers n
 C. positive real numbers n
 D. positive integers n

10 
In binomial expansion (a+b)<sup>n</sup>, n is positive integer the sum of coefficients equals: 
 A.
 B.
 C.
 D. none of these
