1 |
Domain of the function y = tan<sup>-1</sup> x is: |
|
2 |
y = tan-1 x if and only if x = tan y, where: |
- A. -1 < x < 1 and - π < y < π
- B.
- C.
- D.
|
3 |
If f(x) = arccos x, then: |
|
4 |
tan(π + tan<sup>-1</sup>x ) = |
- A. x
- B. π+x
- C. π-x
- D. none of these
|
5 |
If x is positive or zero, then the principal value of any inverse function of x, if it exists lies in the interval: |
|
6 |
y = sin<sup>-1</sup> x if and only if x = sin y, where: |
|
7 |
tan<sup>-1</sup> (-x) = |
- A. tan<sup>-1</sup>x
- B. cot<sup>-1</sup>x
- C. -tan<sup>-1</sup>x
- D. -cot<sup>-1</sup>x
|
8 |
sin<sup>-1</sup> (-x) = |
- A. -sin<sup>-1</sup> x
- B. sin<sup>-1</sup>x
- C. π + cos<sup>-1</sup>x
- D. -cos<sup>-1</sup>x
|
9 |
The range of principal sine function is: |
|
10 |
The domain of y = cos<sup>-1</sup> x function is: |
|