1 |
log<sub>a</sub>1= |
|
2 |
log<sub>b</sub>a x log<sub>c</sub> b can be written as |
- A. log<sub>a</sub> c
- B. log<sub>c</sub>a
- C. log<sub>a</sub>b
- D. log<sub>b</sub>c
|
3 |
If log<sub>x</sub>64 = 2 then value of x will be: |
- A. 64
- B. 2
- C. 8
- D. 64<sup>2</sup>
|
4 |
The value of is: |
- A. logp - logq
- B.
- C. logp + logq
- D. logq - logp
|
5 |
log (m<sup>n</sup>) can be written as: |
- A. (log m)<sup>n</sup>
- B. m log n
- C. n log m
- D. log (mn)
|
6 |
Which of the following parts of logarithm may be positive or negative. |
- A. Characteristics
- B. Mantisa
- C. Both a and b
- D. None of these
|
7 |
With three digits in integral part, the characteristics will be: |
- A. Two
- B. Three
- C. One
- D. 0
|
8 |
Logarithm of a negative number is equal to: |
- A. 1
- B. 0
- C. -1
- D. Not defined
|
9 |
will be equal to: |
|
10 |
Scientific notation of 0.00058 is: |
- A. 5.8 x 10<sup>5</sup>
- B. 58 x 10<sup>-5</sup>
- C. 5.8 x 10<sup>-4</sup>
- D. 5.8 x 10<sup>-5</sup>
|