| 1 | 
											Minors and co-factors of the elements in a determinant are equal in magnitude but they may differ in: | 
											
												
													order
													position
													sign
													symmetry
												
											 | 
										
										
											| 2 | 
											If AB = BA = I, then A and B are: | 
											
												
													equal to each other
													multiplicative inverse of each other
													additive inverse of each other
													both singular
												
											 | 
										
										
											| 3 | 
											A-1 exists if A is: | 
											
												
													singular
													nonsingular
													symmetric
													none
												
											 | 
										
										
											| 4 | 
											 | 
											
												
													zero
													non-singular
													singular
													none of these
												
											 | 
										
										
											| 5 | 
											If A is non singular matrix then At is: | 
											
												
													singular
													nonsingular
													symmetric
													none
												
											 | 
										
										
											| 6 | 
											 | 
											
												
													ab - cd = 0
													ac - bd = 0
													ad - bc = 1
													ad - bc = 0
												
											 | 
										
										
											| 7 | 
											 | 
											
												
													
													
													
													diagonal matrix
												
											 | 
										
										
											| 8 | 
											If A and B are two matrices, then: | 
											
												
													A B = O
													AB = BA
													AB = I
													AB may not be defined
												
											 | 
										
										
											| 9 | 
											If A is a square matrix, then A - At is: | 
											
												
													
													
													
													
												
											 | 
										
										
											| 10 | 
											If A is a square matrix, then A + At is: | 
											
												
													
													
													
													
												
											 | 
										
										
											| 11 | 
											 | 
											
												
													3×2
													2×3
													2×2
													3×3
												
											 | 
										
										
											| 12 | 
											 | 
											
												
													3×1<!--[if gte msEquation 12]><m:oMathPara><m:oMath><m:d><m:dPr><m:begChr
     m:val="["/><m:endChr m:val="]"/><span style='font-size:16.0pt;mso-ansi-font-size:
    16.0pt;mso-bidi-font-size:16.0pt;font-family:"Cambria Math","serif";
    mso-ascii-font-family:"Cambria Math";mso-fareast-font-family:"Times New Roman";
    mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:"Cambria Math";
    mso-bidi-font-family:"Calibri Light";mso-bidi-theme-font:major-latin;
    color:#202124;background:white;font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:dPr><m:e><m:m><m:mPr><m:mcs><m:mc><m:mcPr><m:count
          m:val="1"/><m:mcJc m:val="center"/></m:mcPr></m:mc></m:mcs><span
      style='font-size:16.0pt;mso-ansi-font-size:16.0pt;mso-bidi-font-size:
      16.0pt;font-family:"Cambria Math","serif";mso-ascii-font-family:"Cambria Math";
      mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;
      mso-hansi-font-family:"Cambria Math";mso-bidi-font-family:"Calibri Light";
      mso-bidi-theme-font:major-latin;color:#202124;background:white;
      font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:mPr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr></m:m></m:e></m:d></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="font-size:11.0pt;line-height:150%;font-family:"Calibri","sans-serif";
mso-ascii-theme-font:minor-latin;mso-fareast-font-family:SimSun;mso-hansi-theme-font:
minor-latin;mso-bidi-font-family:Arial;mso-bidi-theme-font:minor-bidi;
mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA"><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f"><v:stroke joinstyle="miter"><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"><v:f eqn="sum @0 1 0"><v:f eqn="sum 0 0 @1"><v:f eqn="prod @2 1 2"><v:f eqn="prod @3 21600 pixelWidth"><v:f eqn="prod @3 21600 pixelHeight"><v:f eqn="sum @0 0 1"><v:f eqn="prod @6 1 2"><v:f eqn="prod @7 21600 pixelWidth"><v:f eqn="sum @8 21600 0"><v:f eqn="prod @7 21600 pixelHeight"><v:f eqn="sum @10 21600 0"></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:formulas><v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"><o:lock v:ext="edit" aspectratio="t"></o:lock></v:path></v:stroke></v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style="width:27.75pt;
 height:61.5pt"><v:imagedata src="file:///C:\Users\Campus.pk\AppData\Local\Temp\msohtmlclip1\01\clip_image001.png" o:title="" chromakey="white"></v:imagedata></v:shape></span><!--[endif]-->
													1×3
													3×3
													1×1
												
											 | 
										
										
											| 13 | 
											If A is a matrix of order m × n and B is a matrix of order n × p then the order of AB is: | 
											
												
													p×m
													p×n
													n×p
													m×p
												
											 | 
										
										
											| 14 | 
											If the matrices A & B have the orders 2×3 and 5×2 then order BA is: | 
											
												
													3×5
													5×2
													2×2
													none
												
											 | 
										
										
											| 15 | 
											Two matrices X and Y are equal if and only if: | 
											
												
													X and Y are of same order
													Their corresponding elements are equal
													Both a and b
													None of these
												
											 | 
										
										
											| 16 | 
											A matrix in which each element is 0 is called: | 
											
												
													
													
													
													
												
											 | 
										
										
											| 17 | 
											 | 
											
												
													singular
													non-singular
													rectangular
													null
												
											 | 
										
										
											| 18 | 
											 | 
											
												
													
													diagonal matrix
													
													
												
											 | 
										
										
											| 19 | 
											 | 
											
												
													
													
													
													None
												
											 | 
										
										
											| 20 | 
											The additive inverse of a matrix A is: | 
											
												
													A
													A<sup>-1</sup>
													- A
													A<sup>2</sup>
												
											 |