1 |
The logic in which every statement is regarded as true or false and no other possibility is called |
Aristotelian login
Inductive logic
Non-Aristotelian logic
None of these
|
2 |
If B-A≠φ , then n(B-A) is equal to |
n(a)+n(c)
n(c)-n(a)
n(a)-n(c)
None of these
|
3 |
If A∩B=B, then n(A∩B) is equal to |
n(a)
n(a)+n(c)
n(c)
None of these
|
4 |
If the intersection of two sets is non-empty, but either is a subset of other are called |
Disjoint sets
Over lapping
Equal sets
None of these
|
5 |
The set which has no proper subset is |
{0}
{}
{∅}
None of these
|
6 |
The set {x|x∈N∧x-4=0} in tabular form is |
{-4}
{0}
{}
None of these
|
7 |
{x|x∈R∧x≠x} is a |
Infinite set
Null set
Finite set
None of these
|
8 |
If A is a subset of B and B contains at least one element which is not an element of A, then A is said to be |
Improper subset of B
Super set of B
Proper subset of B
None of these
|
9 |
For any two sets A and, A ⊆ B if |
x ∈ A ⇒ x ∈ B
x ∉ A ⇒ x ∉ B
x ∈ A ⇒ x ∉ B
None of these
|
10 |
If a 1-1 correspondence can be established b/w two sets A and B, then they are called |
Equal sets
Equivalent sets
Over lapping sets
None of these
|
11 |
Every subset of a finite set is |
Disjoint
Null
Finite
Infinite
|
12 |
0 is a symbol of |
singleton set
Empty set
Equivalent set
Infinite set
|
13 |
The number of subsets of B = {1,2,3,4,5} |
10
32
16
5
|
14 |
The number of proper subset of A ={a.b.c.d} is |
3
6
8
15
|
15 |
The many subset can be formed from the set {a,b,c,d} |
8
4
12
16
|
16 |
The number of subset of {0} is |
1
2
3
None
|
17 |
If E = { } , then P(E) |
∅
{ }
{(2),(4),(6)....}
(∅)
|
18 |
If D = {a} , the P(D) = |
{a}
<p class="MsoNormal"><!--[if gte msEquation 12]><m:oMathPara><m:oMath><i
style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif;
mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><m:r>∅</m:r></span></i></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="line-height: 107%;"><!--[if gte vml 1]><v:shapetype id="_x0000_t75"
coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"
filled="f" stroked="f">
<v:stroke joinstyle="miter"/>
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0"/>
<v:f eqn="sum @0 1 0"/>
<v:f eqn="sum 0 0 @1"/>
<v:f eqn="prod @2 1 2"/>
<v:f eqn="prod @3 21600 pixelWidth"/>
<v:f eqn="prod @3 21600 pixelHeight"/>
<v:f eqn="sum @0 0 1"/>
<v:f eqn="prod @6 1 2"/>
<v:f eqn="prod @7 21600 pixelWidth"/>
<v:f eqn="sum @8 21600 0"/>
<v:f eqn="prod @7 21600 pixelHeight"/>
<v:f eqn="sum @10 21600 0"/>
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
<o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:6.75pt;
height:14.25pt'>
<v:imagedata src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png"
o:title="" chromakey="white"/>
</v:shape><![endif]--><!--[if !vml]--><img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025" style="font-family: Calibri, sans-serif; font-size: 11pt;">∅<!--[endif]--></span><!--[endif]--><o:p></o:p></p>
{∅,{a}}
{∅,a}
|
19 |
The set of even prime numbers is |
(2,4,6,8,10}
{2,4,6,8,10,12}
{1,3,5,7,9}
{2}
|
20 |
If A⊆ B, and B is a finite set, then |
n (a) < n(B)
n(B)<(A)
n(A)≤ n (B)
n(A)≥ n(B)
|