| 1 |
if tanθ = 8/15 and cosθ< 0 , then cscθ = |
-8/15
15/8
3/15
-17/8
|
| 2 |
If cosθ = 9/41 and sinθ< 0, the tanθ = |
41/9
-40/9
9/10
3/20
|
| 3 |
Express cos 320ο between 0οand 45ο |
cos 45<sup>ο</sup>
cos 30<sup>ο</sup>
-cos 40<sup>ο</sup>
cos 40<sup>ο</sup>
|
| 4 |
Express cos 320ο between 0οand 45ο |
cos 45<sup>ο</sup>
cos 30<sup>ο</sup>
-cos 40<sup>ο</sup>
cos 40<sup>ο</sup>
|
| 5 |
If sinθ = 12/13, and sinθ > 0, then tan θ = |
2/5
12/13
13/5
12/5
|
| 6 |
If sinθ = 12/13, and sinθ > 0, then tan θ = |
2/5
12/13
13/5
12/5
|
| 7 |
3/π=........... |
54.71<sup>ο</sup>
21<sup>ο</sup>
51<sup>ο</sup>
29<sup>ο</sup>
|
| 8 |
If x>0 and y<0, then cosθ |
Positive
negative
zero
infinity
|
| 9 |
The circle with are 60 cm2 has an arc 8 cm long. The angle that is subtended at the centre of the circle by the are is |
1.83 radians
2.1 radians
1.05 radians
1.25 radians
|
| 10 |
The are of sector of a circular region of radius r is |
2π r
π r<sup>2</sup>
1/2π r<sup>2</sup>
1/2 r<sup>2</sup>0
|
| 11 |
radian is the measure of the angle subtended oat the centre of the circle by an are, whose length is equal to the |
radius of the circle
circumference
are length
tangent of the circle
none of these
|
| 12 |
The area of a sector of a circular region of radius r is |
2π r
π r<sup>2</sup>
1/2πr<sup>2</sup>
π/6
|
| 13 |
The circular measure of the angle between the hands of a watch of 4 0'clock is |
π/2
π/4
2π/3
π/6
|
| 14 |
If l=1.5 cm and r=2.5 cm, then 0= |
.3 radians
.20 radians
.5 radians
.6 radians
|
| 15 |
the value of 25π/36 in degrees is |
120<sup>ο</sup><p class="MsoNormal"><!--[endif]--><o:p></o:p></p>
125<sup>ο</sup>
60<sup>ο</sup>
115<sup>ο</sup>
|
| 16 |
The value of 289οin radians is |
4.05
3.02
<p class="MsoNormal"><!--[if gte msEquation 12]><m:oMathPara><m:oMath><i
style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>ο</m:r></span></i></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="line-height: 107%;"><!--[if gte vml 1]><v:shapetype id="_x0000_t75"
coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"
filled="f" stroked="f">
<v:stroke joinstyle="miter"/>
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0"/>
<v:f eqn="sum @0 1 0"/>
<v:f eqn="sum 0 0 @1"/>
<v:f eqn="prod @2 1 2"/>
<v:f eqn="prod @3 21600 pixelWidth"/>
<v:f eqn="prod @3 21600 pixelHeight"/>
<v:f eqn="sum @0 0 1"/>
<v:f eqn="prod @6 1 2"/>
<v:f eqn="prod @7 21600 pixelWidth"/>
<v:f eqn="sum @8 21600 0"/>
<v:f eqn="prod @7 21600 pixelHeight"/>
<v:f eqn="sum @10 21600 0"/>
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
<o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:6pt;
height:14.25pt'>
<v:imagedata src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png"
o:title="" chromakey="white"/>
</v:shape><![endif]--><!--[if !vml]--><img width="8" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025" style="font-family: Calibri, sans-serif; font-size: 11pt;"><img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025" style="font-family: Calibri, sans-serif; font-size: 11pt;">π/2<!--[endif]--></span><!--[endif]--><o:p></o:p></p><p class="MsoNormal"><!--[endif]--><o:p></o:p></p>
5.04
|
| 17 |
The value of 7π/9 in terms of degree is |
140<sup>ο</sup>
130<sup>ο</sup>
120<sup>ο</sup>
45<sup>ο</sup>
|
| 18 |
The value of 300ο in term ofπ is |
5π/3
2π/3
5π/2
5π
|
| 19 |
The value of 63οin term ofπ is |
5π/2<img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025"><p class="MsoNormal"><!--[endif]--><o:p></o:p></p>
5π/3
7π/20
7π/3
|
| 20 |
56ο=.....................radians |
1.25
2.56
95
0.98
|
| 21 |
56ο=.....................radians |
1.25
2.56
95
0.98
|
| 22 |
The value of 2π/3 in degree is |
120<sup>ο</sup>
160<sup>ο</sup>
150<sup>ο</sup>
60<sup>ο</sup>
|
| 23 |
The value of 150ο in term of π is |
2π/5<p class="MsoNormal"><!--[endif]--><o:p></o:p></p>
5π/2
3π/2
2550/32401π
|
| 24 |
154ο 20' =
|
2550/34401π<img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025"><p class="MsoNormal"><!--[endif]--><o:p></o:p></p>
27721/22400 π
2521/32400π
4125/32400π
|
| 25 |
21.256ο |
<div>21<sup>ο</sup>15'21"</div><br>
21<sup>ο</sup>20'56"
21<sup>ο</sup>25'1"
21<sup>ο</sup>25'6"
|
| 26 |
16ο30' = |
16.5<sup>ο</sup>
16.2<sup>ο</sup>
16.60<sup>ο</sup>
19.9<sup>ο</sup>
|
| 27 |
The value of 7π /9 in terms of degrees is |
150<sup>ο</sup>
130<sup>ο</sup>
135<sup>ο</sup>
140<sup>ο</sup>
|