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UNIT « (s

ALGEBRAIC FORMULAS
AND APPLICATIONS

» Algebraic Expressions
D Algebraic Formulas
» Surds and their Applications .

» Rationalization e
After completion of this unit, the students will be able to:

» know that a rational expression behaves like a rational number.

» define a rational expression as the quonent 20 of two polynomlals p(x) and q(x) where 9
is not the zero polynomial. e

» examine whether a given algebraic expression is a
o Polynomial or not. « Rational expression or not.

px)

» define — e as a rational expressnon in its lowest tenns if p(x) and q(x) are polynommls thh

integral coefﬁc:ents and having no common factor i

» examine whether a given rational algebraic expression is in lowest form or not.

» reduce a given rational expression to its lowest terms.

» find the sum, difference and product of rational expressions.-

» divide a rational expression with another and express the mult in its lowest' terms.
» find value of al%ebralc expression at some pamcular real number.

» know the formu

(a+b) +(a - ) -2(a +b ) (a+b) ~(a- b) -4ab
« Find the value of g~ a +b %and of ab when the values ofa+ band a — b are known.
» know the formula

(a+b+c) =a +b +c +2ab+2bc+2ca

. Flndthcvnlueofa +b +e whcntbevaluesofa+b+cundab+bc+caucg|m
) Fmdthevalueofa+b+cwhenthevaluesofa2 +b +candab+bc+cauregwen

2 oFmdlheval\leofab+bc+cawhenthevalmofa +b +cnnda+b+cmgwen.
> knowthe formulas : : W Isumps sl ans
(@th) —a’taab(atb)tb a £b' =@xb)a’ :Fab-o-b Joo ey A
« Find the value of a’ £5° whcnthevaluesofaibandabaregwen. : i S
« Find the continued product of (¢ + )k = (&’ +xy+y’ )i’ ~xp+ " ).
» recognize the surds and their applications.

» explain the surds of second order. Use basic operations on surds of second orderto ntiomlm = i
the denominators and evaluate it. i ok

l 1
» explain rationalization (with precise meamng) of real numbers of the types— 'ﬂg
a+ b\f- \E +J—
their combmanons where x and y are natural numbers and a, b are mtegg.ts. T &erazmv
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1.1 ALGEBRAIC EXPRESSIONS

Algebra is an extension of arithmetic. In algebra, we use alphabets

such as g, b, ¢ to stand for constants and x, y, z to stand for any
numerical value we choose.

An. algebraic expression involves numbers and letters together with
operational signs such as +—,%,+. The signs + and — separate an

algebraic expression into terms. .
Example: :
ax+by consists of 2 terms
3%x=2 . consists of 2 terms
9%’ —7xy+7y% . consists of 3 terms

Xy consists of / term

The numbers g, b, 3, 2, 9, 7, 5 in these expressions are called
coefficients, while the letters x, y are known as variables.

An algebralc expressmn is of three types

" (i) Polynomial (ii) Ratlonal (iii) Irrational

A polynomial of degree r in variable %’ is defined as:

P®) =ax"ta, X" ta, , X" +..+a; X +a,x +a, x+a,
where ‘n’ is a non-negative integer and q, ,a, ;,a, ,, ..., a;,4,,4;,4,
are real numbers, where as a, #0. | ’ ‘

" As the highest power of the variable “’ |n this polynomial is ’,
therefore this polynomial is of degree

l 1.1 Rational Expression

i We knpw that.a number of the. form 4
- q
_ ratlonal number

qg#0, p, qu lscalleda



An expression which can be written in the form Qx Ox)#0,
where P(x) and Q(x) are polynomials in %’ is called a ratlonal
expression.
For example:
2 3
() .3x t] i) X ‘+8 (i) 27 +3x+3 G x+1
X +x+3 x+1 X x+2 x +2x+3

are all rational expressions. The rational expressrons can also be :
added, subtracted, multiplied and divided like rational nu_mbers 1

Rational expressions are of two types. \ | ! 1

(i) Proper Rational Expression

(ii) Improper Rational Expression

Proper Rational Expression:-

Pix)

A rational expression —= ) ,Q(®)#0, in which the degree of P(x) is

less than the degree of O(x) is called a proper rational expression.

For example: 21O4IGE, Sk A
x+1 Ix +4x°+5

X +3x+7 " X4l

Improper Rational Expression
P(x)
O(x)

either equal or. greater than the degree of Q(x) |s called an |mproper ‘
rational expression. For.example:

| A rational expression ——,0(x)#0, in which the degree of P(x) is

2 LM
ek 8 TN oL
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113 Examine a Given Algebrulc Expressron

‘Let us. oonsnder the followmg

l'k'(i)‘.212+3x+9_ ' (i;) x+5° (i) R S I(iv)_ ‘._f

4 (i) and (i) are Polynomials , but (iii) and (év) are not polynomials,
| ; because in (iii) and. (iv) the powers of the variables are negative and
‘ ratlonal numbers :

Consider the following as well: -

b Pl o x+1 e e RS é/?%-in
s O xs+xz 3 @ x—1 (lu) x

| 3 s s

e _ ( ):{f w‘\J.' T - 7 (V) i x%

Y ""3,-,?;_h adiz .

e 1% e to00ie & hal'n
1{ w. 7»-.;_ 7 0 )'and (i:) are ratronal expressnons but (m) (zv) and (v) are not rational

exp.r.es_srons, because the powers of the variables are not integers.

|fA nd C are polynomlals where B,C#0, then-‘-‘—q- = 4.

bt BC B'
= ] . (whr'cll is the ﬁmdamemal principle. ofﬁucnons)




EXAMPLE Fmd the lowest term of 2X Y &'y’ SRy

 acl2xy’
SOLUTION: SR
&’y x4’
: 129’ 3y 4x)?
3y

Thus to examine a rational expreééion in lowest terms, we first
write the numerator and denominator in factored form and then
use the fundamental principle. of fractions to obtain,

bz-a%_ (b-a)(b+a)
b -dd. (b- a)(b2+ab+a)

- b+a
b’ +ab+a’

1.1.5 Reduce o Rational Expression fo its l,owesf Terms

"EXAMPLE ' Reduce fo lowest ferms:

s 32x°x" TR Cine:
R e
0y da |
SOLUTION: () s N (") 3 —5x-2
e P
8x 4x y , = 3x2'—'6x+'x‘“2
8x3 j -'."‘-".-'-. 3x(x 2)+I(x 2)
= - e : . o ; S

(3x+1)(x 2)



& ‘“.v

A
xz 2x—x+2 x*-3x—x+3

;"t&ﬁhrﬂ "' .,._ ) & - ¥ A ¥
-~ x+1 x+2

= mﬂ«z);u.x(x—s) —16:=3)




' 0 Lo L
% P = ||II LS '.u"-'_
= "—J\ [ L 5 4

: oy e l"_ i - ...-; % (1= = el ”"l=_
(ii) x+2 XL R -

AL e e R p e (r_i
R BRI : R R g
‘ ; 1 I |Ll|l_."|.-| <

< o s o i N ) ] V.I ‘TL:..nll {1

x+2 -,.?_-x‘ A e

(x+l)(x —JC-i-I) (x ]) (x+I) .
_G+2) -1 + x@? —x-d-l):_p i
(x+1) (x— -1) o —x+])

x +2xfx'—2+x3—-x2-i‘3£ . SRl D g
& -1 “EH). ST gy BTEE

\ . e e --’_'.-" t’“‘ [

- S : LT
x4+ 2x— 2 A AR
xf-x+x - x3+x J SR

Xt ox—20 = it Yok = e 0
. Y W - Tl <
x—x+x-1 = e

ETS

Al . Qe st ‘r#h‘('ﬁﬁ L
EXAMPLE=2. .\ it e cu "El;@fﬁw 2

Solve:
R o I R R
L : . . ' !
() x2—4' ‘ x+2 V “u I. Lo

fm ail 2l
a _|-m,1‘|[.l_Tls-- .
-




'E;'-'.I‘.T ded ‘?‘ v

x+3-(61-2x-x+2)

"_7_;:+:?,:'—.Jé’+3x—2_ iz _ 25
o TR R e

AN ' i I B . -

=SS SRS SN SRS SEN - SR U




1.1.7 Division of a Rational Expression® =~ - = 2

‘and denominator.

= EXAMPLE‘ :.._'.E-,. :I‘ a oy = fr Pa 1” d{m{jﬂl

"i‘ - 2 Sy

s xe) o)t S
x(x- 1)(x+1)(x’ x+]) . . T

I ’ - _'; 7 - : J -,._ i e
x‘—-x+1 :

A5 .

. T."!‘ |-'
: b k L =) N ‘ - I . e T y o

e o ] Bt Ay
(ii , ) . A

X — ; 1 ¢ o = ]
-1 el Bk A

ol
. 3 oy 4 \' X A o E--.‘ =y
= 2x2 (Zx-l) .7 Ve L ; B “-,. ". :-‘ il“ |
(@x-1) (6x+1) e R

— '-zle“ iy . itk £3.% .-‘-‘-‘-' .- 5 y - 1
o6x+1 o R Pt

The rule of dwnsuon of rational expressnon ls flrst factonze the
expression and then canoel the same express:ons |n r}unil’ raf

i

\qr ‘,_ .

\1\

olniiEy 6 'vwk. wmmm ey a i'.fq

§ 7 . -

el £ ; \‘J»
Simplify: ’ 8 _ Wﬂ' "’1,-_

&.. x-:l-I‘ 4‘__‘ ‘x‘j_ -‘. L 5

3x-1
& —
l+: )

2

(u)



Il

g';_‘.:.:_':";'_}”_ _ x+2 1
| i.ﬁ*ff_ bk _ '(;.i) -1 1-3x
B Ty 2l

B il T e

| T TR i | | i
i U3l D) (HD) ;
o y e 1+x' R 3x o *

- _E-De+D - o
R 3y ' il
B ) R
i __’_ ST e e ' |

)
ﬂO‘hh" i‘*ﬂ'} (J 3 ) T 6L L A

Algebrmc Express:on by

TN s i

' rnumbe_r agalnst a vanable “x”in a polynomial P(x),




EXAMPLE-1 = . " e e i e S

i C e e A b s 5 SN e
If P(x)=4x" + 3x* —'Sx+ I, then find P(~1) AT n
SOLUTION: ~ Given: P()=4x" + 35 ~Sx+1 =
 P(=D=4(-1) +3(=1 5(-1)+1

—4+3+5+1

=3
EXAMPLE-2 ‘

If PG )_—% then find P(1)

i S L
AR LA T

SR 2 _ 5y . ' - Tk "3-ﬁ"
sowmoN: P(x)=£.‘__3_5igL6 Lol

P(l)= 5(1)+6 15556

VRS B

Solvie- e
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&2 2
ux‘ |

9.

. 6a‘b’
12¢?b’,-+ 202

= .:-56;—_5(1 !

=
E <
o+
h
b

L s

ST .

10-

12-

T

iw+y2_

“Iledm ﬂie given ruﬁonul expressions fo Iowesi terms.

" 25a°p?
14a°b*

5] 8m3.x3

- 27m’x

x"y

Jy-3x

x?+2x

36m

3x )

= +
X +x-2 x+1

8’ +1 8y2

_2x+3y

oy

Xty

2x—3y

x -

5x ;

_'xz-xy

—2x+ 1 6x

x 9 x?

—12x+27 x— 3

WD b teaiicsi g o



1.2. FORMULAE:

A formula expresses a rule in algebraic terms, its plural is formulae.

‘1.2.1 Formula |
(@+b)f’ +(@a-b)* = 2(a’ +5°)
Proof: LHS = (a+b) +(a—b)’
| =¥a +2ab+b2+a —2ab+ b’
= 288420
= 2(a’ +b%)
= RHS

Formula 2 %
@+bf —(@@—bP = 4ab
Proof: LHS =(a+bf—(a—by %
= (@ +2ab+bY)= (a —2ab+b2)
= a’ +2ab+b —a’ +2ab-b7
= 4ab ghiletie i
- RHS f
- EXAMPLE-1 e

Find the value of a* + b> when a+b = 8 and ab = 12 |

SOLUTION: Given a+b=8 .
~ (a+b)f =8 [ Squaring both the sides’i i
a’ +2ab+b’ = 64 T i e A S

a’ +b% = 64- 2ab ok
= 64-2(12) ‘rab=12

: =64-24

a +b2—— 40



B s F‘?'  EXAMPLE-2
L 5 F"d;'the value of ab whena+b 9anda - b 3

2 i Wb s

= F sownon- We have

Rty  (@+b -(@a- b)2 4ab
R . ©P-(3) = 4ab
S n e - 81-9 = 4ab
R dab =72

,a+b _ .
(a+b+c)z (DR e

';A'E‘s"i
ot

s

II ]

=p +2pc+c i :
. =(@+b+2@a+b)o+c  wherep=ash
= d’ +2ab+b2+2ac+2bc+c .

; 7+‘-‘b‘2 -(ij q : +'2ab +‘2b'c + 2ca




EXAMPLE-4

Find the value of a+b+c when @ +b? +c? = 100 and
ab+bc+ca = 22 A

SOLUTION: We have ' | | i

(a+b+c)2 =+ b+ +2ab+2bc+)pa W

= (@’ +b’ +c? )+2(ab+bc+ca)

= 100+2(22) .
| RESULTS
= 100+44 @ I e
(@a+b+c) =144 o x.-"= ta
@+b+cf =122 . |@ F=a
s = 1) x =iVa

EXAMPLE-5

Find the value of ab +bc+ca when a +b2 +c = 36 and
a+bic =8 Ry i SREREL g

SOLUTION: We have _ |
- (a+b+c)f =a +b2 +c? +2ab+2bc+2ca

W= 36+2(ab+bc+ca)

A 64'?— 36 = 2(ab+bc+ ca),.

“&n 2(ab+be tea) a8 iy =

ab+bc+ca =-22£ i (D:wdmg by 2 on both sides)’__ g

x! N
al! b

LY.
ey

ab+5c+ca = Ji!

’ P



=a +3ab(a+b)+b’ -
l_vf{S (a+b)3 3 o, ;

he .3.._‘.-'? - (a+b)2 (a+b) ‘
| = (a +2ab+b2) @+b) |

s = a '+_a2b’ +2a%b % 26 + Ba+ b’ i

. a %3 e 3l 4

'-% a +3ab(a+b)+b3 i {

L

vl

- RHS



Formula 6 i . -._'__ TRy e
0 e i e S T A e
. 205 2 By Bty :
a + (a‘+b) (@ —ab+b°) Ry
: Qi 2. 2 - .
Proof: RHS= (a+b) (@’ -ab+b ) e
3

=a —a2b+ab2+a2b—abz-:l-b3‘ g o

2+’ or ety S i
= LHS " V. L

Formula 7 e 7

@ b = (@-b) (@ +ab+b?) - A

Proof: RHS= (a—b) (a2.+ab+b2) | o R
= a’ +a’b +ab? —azb-ab._z’.*:b;3 st ek,
gl | ; |
= L.I“I.S

Find the value of x4y’ :Whe'"‘ xy 3 8and x+y =3

~ i 4l p o

SOLUTION: x + y = 5 (Given)

G+3) = ()

X+ +3myery) = 125




EXAMPLE-7

Find the value of o’ —b’ when the values of a—b = 6 and |

ab =7
| SOLUTION:a -b = 6 (Given)
(a—b)’ = (6)° (Taking cube of both the sides)
&b 3ab(a—b) = 216
& -6 -30)(6) = 216
a’-b*-126 = 216

.- a’-b’ =216 +126

LT a’-b’ =342
. EXAWPLE-B
EJ;’ e Resolve into factors x’p? -8y’ p? —4x°¢? + 32)°¢?

-SQWT,IDI.U: x’p? =8y’ p? —4x°¢? +32°¢>  (Rearranging the terms )
= P8y ) a8y
=(p°-44°)(¥' -8)°)
=[2r~@a7] [(x) ~2y)]
= (p=24) (p+24) (x=2y)(x* + 25y + 4y




ALGEBRAIC FORMULAS AND APPLICATIONS

The symbol “..” stands for “therefore”

Resolve into factors. (x+ y)* +64
SOLUTION:  (x+y )’ +64
= (x+y) +@)’
= (x+y+4)[(x+y) ~(x+y)4+(4)]

= (x+y+4)[x2+y2+2xy—4:c—4y+16:|

Find the continued product for x° — y°.

SOLUTION:  x°® — »°
=) -0’ )
=@ +y') & -y’)
= @+ ) —xy+y°) G-y +39+y°)
= (@+y) k=) & -xyp+y’) & +xp+y°)

[EXEROISE - 1.2

Solve the Following Questions Using Formulas.
- (x+2y)° +(x-2y)

N

. (5x+3y) +(5x-3y)

3. Bl+2m)’ —(31-2m)’

F-

e (I+m)(l=m) (P +m’)(1* +m?)

19



_ ALGEBRAIC FORMULAS AND 2

e 6. (2x+3y+2)°
2 ab _ .
) 8. (Bptq+r)
9. (2x+3y)’ : 10. (x+y)° -1
1. (x—y)’ +64 12. 8x° +27)°
| 13, x° —729)° : 14. 64a° - b°
15. Find the value of a’ -5’ whena—b = 4 andab = 5.
£ ] 2 ] 2 :
16. Show that (z+-—-) —(z——) =
o P I ; VA V4
the value of a? + 5% andabwhen a+b = 5 anda—b = 3.
Il anda+b+c = 6.
xz+y —86andxy—-—16 {
At -‘}
the values of




ALGEBRAIC FORMULAS AND APPLICATIONS

1.3 SURDS AND THEIR APPLICATIONS

§ a3
B ae

Surels
Rational Numbers:

A number which can be expressed in the form 5) , Wwhere p’and ¢’

are integers and ¢ # 0 is called a rational number.
342588

eqg. —, — _—2 are all rational numbers
T '

lrrational Numbers:

A real number which is not a rational number, is called an irrational
number. For example:

N2, \/3, \/E, J7 etc. are irrational numbers.

Clearly, an irrational number cannot be expressed in the form (3} :
where p and g are integers and g #0. q

Real Numbers:

The set IR of all real numbers is the union of two disjoint subsets,
namely the set Q of all rational numbers and the set Q' of all irrational
numbers.

Surds of Radicals:

A surd is an irrational number that contains a radical signs.

e.g. V2, 243, 4+ 35, 10- 46, —\/52% are all surds.

EXAMPLE

1

(i) V3 = 32 js a surd of order 2, i.e. it is a quadratic surd.
1

(ii) 4 = 43 is a surd of order 3, i.e. it is a cubic surd.

1 . f
(iii) %fa = a" s called a surd of radical of order ‘n’ and ‘a’is
called the radicand.

The symbol “i.e ” stands for “Thatis *
218
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Laws of Radicals:
As the surd can be expressed with rational exponents, the laws of
indices, are therefore, applicable in surds also.

' Thus for any positive iAriteger ‘n’ and positive rational numbers
. ‘aand b’, we have the following laws:

B L = aaa

| ~_ Laws of Radicals | Laws of Indices

‘ e yi n
® () =a (i) (a"rJ =a

!

A (@) Xab = %a o @) (@) = ar b

/

| peaL
() "% o (ii) (E)” a"

N

-

- afp b !

b;

— =
I !
- =

=

= -rl_ n

1\ i .
@ (o =4 @ (] =@ =

3 / surd which has unity only as rational factor, the other factor being
 irrational, is called a pure surd.

D /3, are pure surds.

nal factor other than unity, the other factor being
rd. : -



1
Ja = a? is a surd of order 2, i.e. a quadratic surd.

Remark:
The symbol /[ is called the radical sign of index 2.

Similar Surds:

Surds having the same irrational factor are called similar or like surds.

For example, J3, 543, ;ﬁ are similar surds.

Surds having no common irrational factor are known as unlike surds.

Example: /2, 3.5, 24/3 are unlike surds.

Addition And Subtraction of Surds:
Similar surds can be added and subtracted

Example: (i) 63+5N3 = (6+5)J5 = 1143
(i) I12J5+45-635 = (12+4-6)[5 = 10V5

Multiplication and division of two surds:

Surds of the same order can be multiptied ehd divided according to
following laws: -

For any natural numbers ‘m’and ‘n

(z)J‘JZ_J_n E"’T J_

EXAMPLE-1

Simplify: /8 x2
SOLUTION:  We use the rule \m x J' = J’_

JBx7 = JBXZ = T 4




?Slmplrfy V180 = J—

using ——
J2d Jm

: . - =\//X-lx/f"3xs
: Rl I Ex2xf

i T“"x."pl:ﬁua '-:—-'»-‘.l i P S = H
¥ " ; A

-45'{\1u NG [
ng Ihe Denominator:

this by multiplying the numerator and denommator by
quare root.

-1 ~
 sownow,  iso- J;_ J180 180 [ Jm m]

MV perom BEand el o 14

T ————




B oy,
S L AR e “"*"f- fﬁl;-illl' i
Multiply: (2+~3) (5-+3) = (e
; .\ (%) 08 \'ﬂlﬁ J'f“.'. =
SOLUTION:  (2++/3) (5-+3) : B i "'i:.:

: Toon el e

: ) TR ‘.'

= 2x5+2x(—3)+ 5x\3 +43(~3) r :
=10-243+5V3-3 M

Jxie it rdrhw’m. s II'I

=7+3‘\/§ S{b . » ‘ -lf.JE'l’ﬂﬁ

Multiply: (3\/3 &I ) (4\/3-' +3 2 ) s ‘

s

sourmo:, (5= /25 N2) NSNS

il

e
-|Iﬂ_.

\ 5 zz(f )2+9(J"_"5 A
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EXAMPLE-4
‘ ~ Expressin the simplest form
}‘ . G) V288 (i) V147 @iii) 36d°
A SOLUTION: (i) /288
Jiie ' |
W 288
Al = /2x2x2x2x2x3x3 i
¢ 72

= 2x2x2x2x3x3x2

~
Co

= 2x2x3x~/5

=122

SENNSENES
o
N

(ii) Ji47
= 7x7%x3
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1.4 RATIONALIZATION:

Binomial Surd:

An expression is called a binomial surd if it consists of two terms in
which at least one term is a surd. For example:

a+bx, Vx +.[y are binomial surds.

Conjugate of Binomial Surds:
() a+bJx and a—bVx
(i) Vx+y and Jx-.[y

are surds whose product is a rational number. The pair of such surds
is called conjugate binomial surds. Each of these two surds is a
conjugate of the other. For example:

(i) 2+3/5is conjugate binomial surd of 2—3+/5.
(ii) 3 ++/7 isconjugate binomialsurdof /3 —+/7.

Remember that:

Conjugate binomial surds are rationalizing factors of each other.

Rationalizing Factor:

When the product of two surds is rational, then each one of them is
called the rationalizing factor of the other.

EXAMPLE
() 2v3x+/3 = 6, whichis rational.
So 3is rationalizing factor of 243.
() (N3++2) (3-2) = 3-2 = I whichisrational.
So (/3 ++/2) is rationalizing factor of (+/3 —~/2). |
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~ Rationalization of Surds:
T > process of converting a surd to a rational number by multiplying it
1@ suitable rationalizing factor, is called the rationalization of the




10

|~

@) ZHS () xos @) (x+'1") "
x xBTSl T

1 2 . ) I 5 , . i
) [x-;) (vi) x2+x—2 i) oL z

SOLUTION: . — 3+J§

|
|

{ (,)_ : LR :
i ) X ; 3+'J_ "_:v',‘ . - u'I:
| 2 5 :

|

3“‘/5 | 3‘;‘*/5'

@) x+— o e

—‘(3+~/_)+ &= .;' ]

f‘.'..‘ L ‘-'-n\i




| ALGEBRAIC FORMULAS AND APPLICATIONS

s v i el e

etip-er (from (i)
p X

_ (from (iii))

=x2+i2+2—2
P

= *-_é_ﬂ.z)-z

- H('*
~ {from (iv)



E XERCISE - 1.3

Remove the radical sign from the denominator:

] 2007 6

(@) NG (1) 5D (iii) ?

Simplify the following expressions:

() N2+48 (i) 4450 +~200 +50

i) (N12-2) (N20-32) (v) 6+2) (5=~5)
W) (V3-26-35) i) (7+3) (5+42)

Rationalize the denominators of the following :

v Lo 7 . 43 oy
() Ve (i) VI (iid) Tl (@iv) N \[;
2 29

) 5\7 i) J3+
2+3ﬁ \/5—

Vii
G P e
(viii) —17
W7 +243
1 it
If x = /5 + 2, then find the values of (i) x+; and (if) x° +;2'
' . 1 s
If x = 2++/3, then find the values of (i) s and (i) x R
| ) It Aol
Ifx = V3 -+/2, then find the values of () Sae and (@) x i
1 : : i % 1
If = = 3—+/2, then evaluate () x+; @) x i
X

& 1 . 1
If el V10 + 3, then evaluate () ( P+;)z @) ( P—.;)z
P :

b+b? —a’ (i) \/a+3-\/a—r3‘
b—+b’-a® Ja+3+a=-3

Rationalize (z)
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~ (a) rational number
@ swd

:.2. (a+b)’ —(a-b) =
@ 2@’ +b°)
() —4ab

Review Exercise-1

& An algebralc expressnon of the form
are polynomials, is called a:

(b)

(@

(b)
(@)

(b)
(d)

' (a-b)’

oo ¥
{ i\';ﬂ

il i,g( 0)#0, P(x) and Q(x)

rational expression

mixed surd

4ab

a’ +b’

a’+b%
2(a’ +b%)

(a+b)?
a +b’

(a+b)
a3+b3.

=

(a+b)3




9. Ja=a?is asurd of order:”
(a) zero (b) -1
(c 2 _ (d)_ 50

10. Surds can be hultiplied, if they are of the
(a) same order (b) order 2
(c) different order (d) ordern

II- Fill in the blanks.

1. A number of the formZ, g #0,.p, ge Zis called a
R calle

2. An expression of the form%,g(x) #0, P(x),0(x)are polynomials
v X
is called '

(2]

. (a+b)’ ~(a-b)" =

-

. (a+b)’ +(a-b) =

2

a’ +3ab(a+b)+b’ =

o

o’ ~3ab(a—-b)~b’ =

7. (a=b)(a*+ab+b?)=__

8. (a+b)(a’-ab+b’)=____

- 9. An irrational number that contains radical signs is
called a _ |

10. a=a""?is a surd of order.
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SUMMARY
Fqnnutae; |
A (a:t:b) =a iZab+b2
“(a+b)? +(a- b —z(a 2167 ) '
(a+b)’ —(a—b)’ =4ab
(a+b+c)’ =a’ +b’ +c? +2ab+ 2bc+ 2ac
| (atb)=d’+3ab(axb)+V’
A P (b —abi )

t-:ghtsr_.-mns;icg =5’ =(a-b)( _a? +ab+b’)

j -‘ Surd ‘Asurd is an irrational number that contains radical signs.

Pllre Surd: A surd which has unlty only as rational factor, the other .
:; ~ factor being irrational is called a pure surd.

, Mixod surd: A surd which has ratlonal factor other than umty the other
A ‘ factor being lrratlonal is called mixed surd.

f’urd Surds hawng the same lrrataonal factor are called snmllar

n the product of two surds is rational, then
ne of them is called the rattonallzmg factor of

t’f‘tla"f.yu s A5 I

xﬁi’n"; Yo iz 5 i

; ;t_t-,. L:."u!- |2 ik




