EXERCISE NO. 5

SET-A

-:5.1:-

If f(x) = 5x + 3, find f(1), f(2), f(3)

SOLUTION

$$f(x) = 5x + 3$$

$$f(1) = 5(1) + 3 = 4 + 3 = 8$$

$$f(2) = 5(2) + 3 = 10 + 3 = 13$$

$$f(3) = 5(3) + 3 = 15 + 3 = 18$$

-:5.2:-

If f(x) = 2r - 5, find f(1), f(10), f(100)

SOLUTION

$$f(r) = 2r - 5$$

$$f(1) = 2(1) - 5 = 2 - 5 = -3$$

$$f(10) = 2(10) - 5 = 20 - 5 = 15$$

$$f(100) = 2(100) - 5 = 200 - 5 = 195$$

-:5.3:-

If f(t) = 6t + 4, find f(-1/2), f(1/2), f(3/2)

SOLUTION

$$f(t) = 6t + 4$$

$$f(-\frac{1}{2}) = 6(-\frac{1}{2}) + 4 = -3 + 4 = 1$$

$$f(\frac{1}{2}) = 6(\frac{1}{2}) + 4 = 3 + 4 = 7$$

$$f(^{3}/_{2}) = 6(^{3}/_{2}) + 4 = 9 + 4 = 13$$

-:5.4:-

If y = 2x + 3, find y when x = 1, 2, 3, 4

SOLUTION

$$y = 2x + 3$$

$$y = 2(1) + 3 = 2 + 3 = 5$$

$$y = 2(2) + 3 = 4 + 3 = 7$$

$$y = 2(3) + 3 = 6 + 3 = 9$$

$$y = 2(4) + 3 = 8 + 3 = 11$$

If
$$y = -3x + 5$$
, find y when $x = -1, -2, -3, -4$
SOLUTION

SOLUTION

$$y = -3x + 5$$

$$y = -3(-1) + 5 = 3 + 5 = 8$$

$$y = -3(-2) + 5 = 6 + 5 = 11$$

$$y = -3(-3) + 5 = 9 + 5 = 14$$

$$y = -3(-4) + 5 = 12 + 5 = 17$$

-:5.6:-

For the line y = 4x + 2, compute the following table.

X	0	,1	2	3	4	5	6	7	8	19	10
y	140		NAME OF				A B			-	10

SOLUTION

$$y = 4x + 2$$

 $y = 4(0) + 2 = 0 + 2 = 2$, $y = 4(1) + 2 = 4 + 2 = 6$
 $y = 4(2) + 2 = 8 + 2 = 10$, $y = 4(3) + 2 = 12 + 2 = 14$
 $y = 4(4) + 2 = 16 + 2 = 18$, $y = 4(5) + 2 = 20 + 2 = 22$
 $y = 4(6) + 2 = 24 + 2 = 26$, $y = 4(7) + 2 = 28 + 2 = 30$
 $y = 4(8) + 2 = 32 + 2 = 34$, $y = 4(9) + 2 = 36 + 2 = 38$
 $y = 4(10) + 2 = 40 + 2 = 42$

v	0	1 .	10) +	10		42		TANK!			
A	U	1 1	2	3	4	5	6	7	8	9	10
_ Y	2	, 6	10	14	18	22	26	30	21	20	10
13 23 3	No USE				, , ,		1 20	30	1 34	38	42

-:5.7:-

Find the equation to the straight line passing through (θ, θ) and (2, -2)

SOLUTION

Equation to straight line passing through two points is

$$(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
Here $x_1 = 0$, $y_1 = 0$, $x_2 = 2$, $y_2 = -2$

$$(y - \theta) = \frac{-2 - \theta}{2 - \theta} (x - \theta)$$

$$y = -1(x - \theta)$$

$$y = -x$$

-:5.8:-

Find the equation to the straight line passing through (3, 4) and (5, 6)

SOLUTION

Equation to straight line passing through two points is

$$(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
Here $x_1 = 3$, $y_1 = 4$, $x_2 = 5$, $y_2 = 6$.
$$(y - 4) = \frac{6 - 4}{5 - 3} (x - 3)$$

$$y - 4 = \frac{2}{2} (x - 3)$$

$$y - 4 = x - 3$$

$$y = x - 3 + 4$$

$$y = x + 1$$

Find the equation to the straight line passing through (1, 3) and (-7, 8)

SOLUTION

Equation to straight line passing through two points is

$$(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
Here $x_1 = 1$, $y_1 = 3$, $x_2 = -7$, $y_2 = 8$

$$(y - 3) = \frac{8 - 3}{-7 - 1} (x - 1)$$

$$y - 3 = \frac{5}{-8} (x - 1)$$

$$8(y - 3) = -5(x - 1)$$

$$8y - 24 = -5x + 5$$

$$8y = -5x + 5 + 24$$

$$8y = -5x + 29$$

-:5.10:-

Find the equation to the straight line passing through (-1, 3) and (7, 8)

SOLUTION

Equation to straight line passing through two points is

$$(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
Here $x_1 = -1$, $y_1 = 3$, $x_2 = 7$, $y_2 = 8$

$$(y - 3) = \frac{8 - 3}{7 + 1}(x + 1)$$

$$y - 3 = \frac{5}{8}(x + 1)$$

$$8(y - 3) = 5(x + 1)$$

$$8y - 24 = 5x + 5$$

$$8y = 5x + 5 + 24$$

$$8y = 5x + 29$$

-:5.11:-

Find the equation to the straight line passing through (-1, -3) and (-7, 8)

SOLUTION

Equation to straight line passing through two points is

$$(y-y_1) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
Here $x_1 = -1$, $y_1 = -3$, $x_2 = -7$, $y_2 = 8$

$$(y+3) = \frac{8-3}{-7+1}(x+1)$$

$$y+3 = \frac{11}{-6}(x-1)$$

$$-6(y+3) = 11(x+1)$$

$$-6y-18 = 11x+11$$

$$-6y=11x+11+18$$

$$-6y=11x+29$$

$$6y=-11x-29$$

-:5.12:-

Find the equation to the straight line passing through (0, -a) and (b, 0)

SOLUTION

Equation to straight line passing through two points is

$$(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
Here $x_1 = 0$, $y_1 = -a$, $x_2 = b$, $y_2 = 0$

$$(y + a) = \frac{0 + a}{b - 0}(x - 0)$$

$$y + a = \frac{a}{b}(x)$$

$$by + ab = ax$$

$$by = ax - ab$$

-:5.13:-

Find the equation to the straight line passing through (2, 7) and its slope is 3/5.

SOLUTION

Equation to straight line by point slope equation is

$$y-y_1 = m(x-x_1)$$

$$y-7 = \frac{3}{5}(x-2)$$

$$5(y-7) = 3(x-2)$$

$$5y-35 = 3x-6$$

$$5y = 3x-6+35$$

$$5y = 3x+29$$

-:5.14:-

Find the equation to the straight line passing through (-2, -3) and its slope is -3.

SOLUTION

Equation to straight line by point slope equation is

$$y - y_1 = m(x - x_1)$$

 $y + 3 = -3(x + 2)$
 $y = -3x - 6 - 3$
 $y = -3x - 9$

-:5.15:-

Find the equation to the straight line passing through (-3, 4) and its slope is 2/3.

SOLUTION

Equation to straight line by point slope equation is

$$y - y_1 = m(x - x_1)$$

$$y - 4 = \frac{2}{3}(x + 3)$$

$$3(y - 4) = 2(x + 3)$$

$$3y - 12 = 2x + 6$$

$$3y = 2x + 6 + 12$$

$$3y = 2x + 8$$

-:5.16:-

Find the equation to the straight line passing through (2, -3) and its slope is -2.

SOLUTION

Equation to straight line by point slope equation is

$$y-y_1 = m(x-x_1)$$

 $y+3 = -2(x-2)$
 $y+3 = -2x+4$
 $y = -2x+4-3$
 $y = -2x+1$

-:5.17:-

Find the equation to the straight line passing through (0, 2) and its slope is -2/3.

SOLUTION

Equation to straight line by point slope equation is

$$y - y_1 = m(x - x_1)$$

$$y - 2 = -\frac{2}{3}(x - 0)$$

$$3(y - 2) = -2x$$

$$3y - 6 = -2x$$

$$3y = -2x + 6$$

-:5.18:-

Find the equation to the straight line in which y-intercept is 2 and slope is 2/3.

SOLUTION

The slope, intercept equation is

$$y = mx + c$$

 $y = \frac{2}{3}x + 2 = \frac{2x + 6}{3}$
 $3y = 2x + 6$

Find the equation to the straight line in which y-intercept is - 3 and slope is 3/4.

SOLUTION

The slope, intercept equation is

$$y = mx + c$$

 $y = \frac{3}{4}x - 3 = \frac{3x - 12}{4}$
 $4y = 3x - 12$

Find the equation to the straight line in which y-intercept is 5/2 and slope is -2/5.

SOLUTION

The slope, intercept equation is

$$y = mx + c$$

$$y = -\frac{2}{5}x + \frac{5}{2} = \frac{-4x + 25}{10} \Rightarrow 10y = -4x + 25$$

-:5.21:-

Find the equation to the straight line in which y-intercept is - 4 and slope is -1.

SOLUTION

The slope, intercept equation is

$$y = mx + c$$

$$y = -1x - 4 \Rightarrow y = -x - 4$$

Find the slope and y-intercept of 3x + 2y - 7 = 0SOLUTION.

$$3x + 2y - 7 = 0$$

$$2y = -3x + 7$$
$$y = -\frac{3}{2}x + \frac{7}{2}$$

$$v = mx + c$$

Hence Slope = m = -3/2 and Intercept = c = 7/2

Find the slope and y-intercept of 3x + 2y + 7 = 0

SOLUTION

$$3x + 2y + 7 = 0$$

$$2y = -3x - 7$$
$$y = -\frac{3}{2}x - \frac{7}{2}$$

$$v = mx + c$$

Hence Slope = m = -3/2 and Intercept = c = -7/2

-:5.24:-

Find the slope and y-intercept of 5x - 4y + 8 = 0SOLUTION

$$5x - 4y + 8 = 0$$

$$-4y = -5x - 8 \Rightarrow 4y = 5x + 8$$

$$y = \frac{5}{4}x + 2 \Rightarrow y = mx + c$$

Hence Slope = m = 5/4 and Intercept = c = 2

-:5.25:-

Find the slope and y-intercept of 3x - 6y + 4 = 0

SOLUTION

$$3x - 6y + 4 = 0$$

$$-6y = -3x - 4$$

$$6y = 3x + 4$$

$$y = \frac{3}{6}x + \frac{4}{6}$$

$$y = \frac{1}{2}x + \frac{2}{3}$$

$$y = mx + c$$

Hence Slope = m = 1/2 and Intercept = c = 2/3

-:5.26:-

Find the slope of straight lines which passes through (3, 5) and (5, 3).

. SOLUTION

Slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Here $x_1 = 3$, $y_1 = 5$, $x_2 = 5$ and $y_2 = 3$

$$m = \frac{3 - 5}{5 - 3} = \frac{-2}{2} = -1$$

-:5.27:-

Find the slope of straight lines which passes through (1, 4) and (-1, 4).

SOLUTION

Slope =
$$m = \frac{y_2 - y_1}{x_2 + x_1}$$

Here $x_1 = 1$, $y_1 = 4$, $x_2 = 1$ and $y_2 = 4$

$$m = \frac{4 - 4}{-1 - 1} = \frac{0}{-2} = 0$$

-:5.28:-

Find the slope of straight lines which passes through $\left(\frac{2}{3}, \frac{3}{2}\right)$ and $\left(\frac{6}{7}, \frac{7}{6}\right)$.

SOLUTION

Slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Here $x_1 = \frac{2}{3}$, $y_1 = \frac{3}{2}$, $x_2 = \frac{6}{7}$, and $y_2 = \frac{7}{6}$

$$m = \frac{\frac{7}{6} - \frac{3}{2}}{\frac{6}{7} - \frac{2}{3}} = \frac{\frac{7 - 9}{6}}{\frac{18 - 14}{21}}$$

$$\frac{-2}{\frac{4}{21}} = \frac{-2}{6} \times \frac{21}{4} = \frac{-42}{24} = \frac{-7}{4}$$

-:5.29-

Find the slope of straight lines which passes through $\left(\frac{1}{4}, \frac{4}{7}\right)$ and $\left(\frac{4}{7}, \frac{1}{4}\right)$.

SOLUTION

Slope = m =
$$\frac{\dot{y}_2 - \dot{y}_1}{x_2 - \dot{x}_1}$$
,
Here $x_1 = \frac{1}{4}$, $y_1 = \frac{4}{4}$, $x_2 = \frac{4}{7}$, and $y_2 = \frac{1}{4}$

$$m = \frac{\frac{1}{4} - \frac{4}{7}}{\frac{1}{7} - \frac{1}{4}} = \frac{\frac{7 - 16}{28}}{\frac{16 - 7}{28}} \Rightarrow \frac{\frac{-9}{28}}{\frac{9}{28}} = \frac{-9}{28} \times \frac{28}{9} = -1$$

-:5.30:-

Graph the following linear function, y = 6x - 2

SOLUTION

Putting x = -2, -1, 0, 1, 2, 3

$$y = 6(-2) - 2 = -12 - 2 = -14$$

$$v = 6(1) - 2 = 6 - 2 = 4$$

$$y = 6(-1) - 2 = -6 - 2 = -8$$

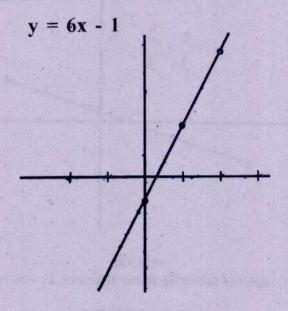
$$y = 6(2) - 2 = 12 - 2 = 10$$

$$y = 6(0) - 2 = 0 - 2 = 2$$

$$y = 6(3) - 2 = 18 - 2 = 16$$

X	-2	-1	0	1	2	3
Y	-14	-8	-2	4	10	16

Graph



-:5.31:-

Graph the following linear function, $y = \frac{x}{3} + \frac{2}{3}$

SOLUTION

$$y = \frac{x}{3} + \frac{2}{3}$$

Putting x = -11, -5, 1, 4, 7

$$y = \frac{-11}{3} + \frac{2}{3} = \frac{-11+2}{3} = \frac{-9}{3} = -3, \ y = \frac{-5}{3} + \frac{2}{3} = \frac{-5+2}{3} = \frac{-3}{3} = -1$$

 $y = \frac{1}{3} + \frac{2}{3} = \frac{1+2}{3} = \frac{3}{3} = 1, \ y = \frac{4}{3} + \frac{2}{3} = \frac{4+2}{3} = \frac{6}{3} = -3$

$$y = \frac{7}{3} + \frac{2}{3} = \frac{7+2}{3} = \frac{9}{3} = 3$$

x	-11	-5	1	4	7
y	-3	-1	1	2	3



-:5.32:Graph the following linear function, 2x - 3y = 12

SOLUTION

$$2x-3y = 12$$

$$-3y = 12-2x$$

$$y = \frac{2x-12}{2}$$

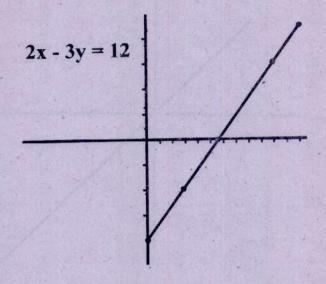
Putting x = 0, 3, 6, 9, 12

$$y = \frac{2(0) - 12}{3} = \frac{-12}{3} = -4, \quad y = \frac{2(3) - 12}{3} = \frac{6 - 12}{3} = \frac{-6}{3} = -2$$

$$y = \frac{2(6) - 12}{3} = \frac{12 - 12}{3} = 0, \quad y = \frac{2(9) - 12}{3} = \frac{18 - 12}{3} = 2$$

$$y = \frac{2(12) - 12}{3} = \frac{24 - 12}{3} = 4$$

X	0	3	6	9	12
Y	-4	-2	0	2	4



-:5.33:-

Graph the following linear function, 3x + 2y = 0

SOLUTION

$$3x + 2y = 0$$

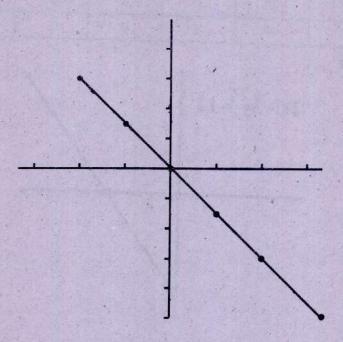
$$2y = -3x$$

$$y = \frac{-3x}{2}$$

Putting x = -2, -1, 0, 1, 2, 3

$$y = \frac{-3(-2)}{2} = \frac{6}{2} = 3$$
, $y = \frac{-3(-1)}{2} = \frac{3}{2} = 1.5$, $y = \frac{-3(0)}{2} = \frac{0}{2} = 0$,
 $y = \frac{-3(1)}{2} = \frac{-3}{2} = -1.5$, $y = \frac{-3(2)}{2} = \frac{-6}{2} = -3$, $y = \frac{-3(3)}{2} = \frac{-9}{2} = -4.5$

X	-2	-1 .	0	1	2	3
Y	3	1.5	0	-1.5	-3	-4.5



-:5.34:-

Graph the following linear function, 6x + 5y = 9SOLUTION

$$6x + 5y = 9$$
$$5y = 9 - 6x$$
$$y = \frac{9 - 6x}{5}$$

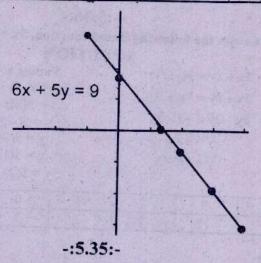
Putting x = -1, 0, 1, 2, 3, 4

$$y = \frac{9 - 6(-1)}{5} = \frac{9 + 6}{5} = \frac{15}{5} = 3, \quad y = \frac{9 - 6(0)}{5} = \frac{9 - 0}{5} = 1.8$$

$$y = \frac{9 - 6(1)}{5} = \frac{9 - 6}{5} = \frac{3}{5} = 0.6, \quad y = \frac{9 - 6(2)}{5} = \frac{9 - 12}{5} = \frac{-3}{5} = -0.6$$

$$y = \frac{9 - 6(3)}{5} = \frac{9 - 18}{5} = \frac{-9}{5} = -1.8, \quad y = \frac{9 - 6(4)}{5} = \frac{9 - 24}{5} = \frac{-15}{5} = -3$$

X	-1	0	, 1	2	3	4
Y	3	1.8	0.6	-0.6	-1.8	-3



Graph the following linear function, $\frac{x}{2} + \frac{y}{4} = 1$

SOLUTION

$$\frac{x}{2} + \frac{y}{4} = 1$$

$$y = 4 - 2(-2) = 4 + 4 = 8$$

$$y = 4 - 2(-1) = 4 + 2 = 6$$

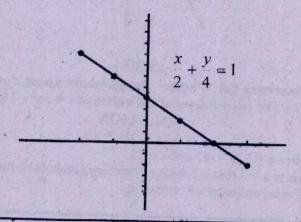
$$y = 4 - 2(0) = 4 + 0 = 4$$

$$y = 4 - 2(1) = 4 - 2 = 2$$

$$y = 4 - 2(2) = 4 - 4 = 0$$

$$y = 4 - 2(-3) = 4 - 6 = -2$$

X	-2	-1	0	1	2	3
Y	8	6	4	2	Õ	-2



-:5.36:-

Graph the following linear function, 5x + 2y = 3(y - 1)

SOLUTION

$$5x + 2y = 3(y - 1)$$

$$5x + 2y = 3y - 3$$

$$2y - 3y = -3 - 5x$$

$$-y = -5x - 3$$

$$y = 5(-3) + 3 = -15 + 3 = -12$$

$$y = 5(-2) + 3 = -10 + 3 = -7$$

$$y = 5(-1) + 3 = -5 + 3 = -2$$

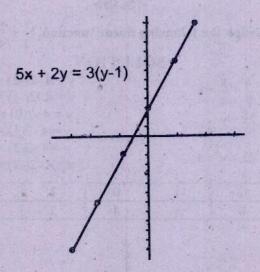
$$y = 5(0) + 3 = 0 + 3 = 3$$

$$y = 5(1) + 3 = 5 + 3 = 8$$

$$y = 5(2) + 3 = 10 + 3 = 13$$

X	-3	-2	-1	0	1	2
Y	-12	-7	-2	3	8	13

Graph



-:5.37:-

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = 3x^2 - 15x + 12$

SOLUTION

$$y = 3x^2 - 15x + 12$$

Here a = 3, b = -15 and c = 12

- (a) Since a > 3 that is positive, therefore parabola opens upward
- (b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(-15)}{2(3)} = \frac{15}{6} = \frac{5}{2}$$

and

$$y = \frac{4ac - b^2}{4a} = \frac{4(3)(12) - (15)^2}{4(3)}$$
$$= \frac{144 - 225}{12} = -\frac{81}{12} = -\frac{27}{4}$$

Hence Co-ordinate of vertex are x = 5/2 and y = -27/4

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = 12x^2 - 2x - 4$

SOLUTION

$$y = 12x^2 - 2x - 4$$

Here a = 12, b = -2 and c = -4

(a) a = 12

Since a > 0 i.e. a is positive, therefore parabola opens upward

(b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(-2)}{2(12)} = \frac{2}{24} = \frac{1}{12}$$

and

$$y = \frac{4ac - b^2}{4a} = \frac{4(12)(-4) - (2)^2}{4(12)}$$
$$= \frac{-192 - 4}{24} = -\frac{196}{24} = -\frac{49}{6}$$

Hence Co-ordinate of vertex are x = 1/12 and y = -49/6

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = -2x^2 + 11x - 12$

SOLUTION

$$y = -2x^2 + 11x - 12$$

Here
$$a = -2$$
, $b = 11$ and $c = -12$

(a) a = -2

Since a<0 i.e. a is negative, therefore parabola opens downward

(b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(11)}{2(-2)} = \frac{-11}{-4} = \frac{11}{4}$$

and

$$y = \frac{4ac - b^2}{4a} = \frac{4(-2)(-12) - (11)^2}{4(-2)}$$
$$= \frac{96 - 121}{-8} = \frac{-25}{-8} = \frac{25}{8}$$

Hence Co-ordinate of vertex are x = 11/4 and y = 25/8

-:5.40:-

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = x^2 - 9x + 18$

SOLUTION

$$y = x^2 - 9x + 18$$

Here a = 1, b = -9 and c = 18

(a) a=1

Since a > 0 i.e. a is positive, therefore parabola opens upward

(b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(-9)}{2(1)} = \frac{9}{2}$$

and

$$y = \frac{4ac - b^2}{4a} = \frac{4(1)(18) - (-9)^2}{4(1)}$$
$$= \frac{72 - 81}{4} = -\frac{9}{4}$$

Hence Co-ordinate of vertex are x = 9/2 and y = -9/4

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = x^2 + 2x - 8$

SOLUTION

$$y = x^2 + 2x - 8$$

Here
$$a = 1$$
, $b = 2$ and $c = -8$

 $(a) \qquad a=1$

Since a > 0 i.e. a is positive, therefore parabola opens upward

(b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(2)}{2(1)} = \frac{-2}{2} = -1$$

and

$$y = \frac{4ac - b^{2}}{4a} = \frac{4(1)(-8) - (2)^{2}}{4(1)}$$
$$= \frac{-32 - 4}{4} = \frac{36}{4} = -9$$

Hence Co-ordinate of vertex are x = -1 and y = -9

-:5.42:-

Determine (a) Whether the parabola opens downwards or upward (b) The co-ordinates of the vertex of $y = 2x^2 - 12x + 18$

SOLUTION

$$y = 2x^2 - 12x + 18$$

Here a = 2, b = -12 and c = 18

a = 2(a)

Since a > 0 i.e. a is positive, therefore parabola opens upward

(b) The co-ordinates of vertex are:

$$x = \frac{-b}{2a} = \frac{-(-12)}{2(2)} = \frac{12}{4} = 3$$

and

$$y = \frac{4ac - b^2}{4a} = \frac{4(2)(18) - (-12)^2}{4(2)}$$
$$= \frac{144 - 144}{8} = \frac{0}{8} = 0$$

Hence Co-ordinate of vertex are x = 3 and y = 0

-:5.43:-

Find the vertex and graph the following quadratic function:

$$y = 4x^2 - 3x + 1$$
SOLUTION

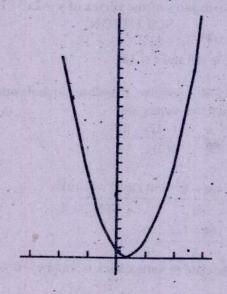
$$y = 4x^2 - 3x + 1$$

$$\frac{-b}{2a} = \frac{-(-3)}{2(4)} = \frac{3}{8}, f\left(\frac{-b}{2a}\right) = f\left(\frac{3}{8}\right)$$

$$= 4\left(\frac{3}{8}\right)^2 - 3\left(\frac{3}{8}\right) + 1 = 4\left(\frac{9}{64}\right) - \frac{9}{8} + 1$$

$$= \frac{9}{16} - \frac{9}{8} + 1 = \frac{9 - 18 + 16}{16} = \frac{7}{16}$$
So the vertex is $\left(\frac{3}{8}, \frac{7}{16}\right)$

x	-2	-1	0	3/8	1	2.	3
4x ²	16	4	0	9/10	4	16	36
-3x	6	3	0	-9/8	-3	-6	-9
+1	1	1	1	1	1	1	- 1
$y = 4x^2 - 3x + 1$	23	8	1	7/16	2	11	28



-:5.44:-

Find the vertex and graph the following quadratic function:

$$y = x^2 - 2x$$

SOLUTION $y = x^2 - 2x$

$$y = x^{2} - 2x$$

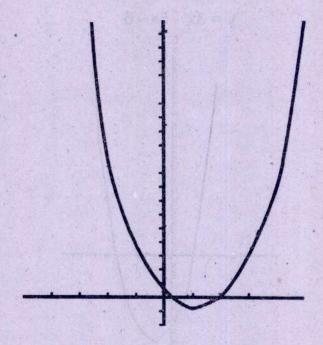
$$\frac{-b}{2a} = \frac{-(-2)}{2(1)} = \frac{2}{2} = 1, \ f\left(\frac{-b}{2a}\right) = f(1)$$

$$= (1)^{2} - 2(1) = 1 - 2 = -1$$

Hence vertex is (1, -1)

x	-3	-2	-1	0	1	2	3	4	5
x ²	9	4	1	0	1	4	9	16	25
-2x	6	4	2	0	-2	-4	-6	-8	-10
$y = x^2 - 2x$	15	8	3	0	-1	0	- 3	8	15

Graph



-:5.45:-

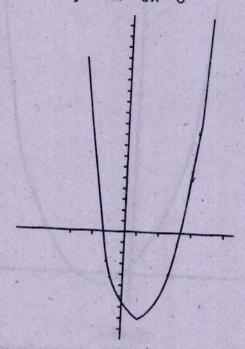
Find the vertex and graph the following quadratic function: $y = 3x^2 - 5x - 6$

SOLUTION
$$y = 3x^2 - 5x - 6$$

$$\frac{-b}{2a} = \frac{-(-5)}{2(3)} = \frac{5}{6}, \ f\left(\frac{-b}{2a}\right) = f\left(\frac{5}{6}\right)$$
$$= 3\left(\frac{5}{6}\right)^2 - 5\left(\frac{5}{6}\right) - 6 = \frac{25}{12} - \frac{25}{6} = -6$$
$$= \frac{25 - 50 - 72}{12} = -\frac{97}{12} = -8\frac{1}{12}$$

		Exercise No. 5					
-2	-1	0	5/6	1	1 2	3	1
	3 5	0	25/12	3	12	27	48
-6	-6	-6	-6	-5	-10	-15	-20
16	2	-6	-97/12	-8	-6	-6	-6
	16	10 5	-2 -1 0 12 3 0 10 5 0 -6 -6 -6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

$$y = 3x^2 - 5x - 6$$



-:5.46:-

Find the vertex and graph the following quadratic function: $y = 4x^2 - 4x + 1$

$$y = 4x^2 - 4x + 1$$

$$y = 4x^2 - 4y + 1$$

SOLUTION

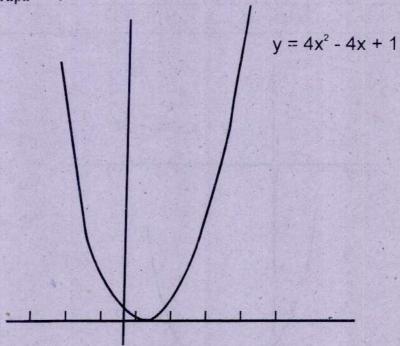
$$y = 4x^2 - 4x + 1$$

 $\frac{-b}{2a} = \frac{-(-4)}{2(4)} = \frac{4}{8} = \frac{1}{2}$

$$f\left(\frac{-b}{2a}\right) = f\left(\frac{1}{2}\right) \Rightarrow = 4\left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right) + 1 = 1 - 2 + 1 = 0$$

112.5					100	
Hen	ce v	en	ex	IS	(1/2.	(0)

x	-2	-1	0	1/2	1	2	3	4
$4x^2$	16	4	0	1	4	16	36	64
-4x	8	4	0	-2	-4	-8	-12	-16
+1	1	1	1	1	1	1	1	1
$y = 4x^2 - 4x + 1$	25	9	1	0	1	9	25	49



-:5.47:-

Find the vertex and graph the following quadratic function: $y = x^2 - 4x - 17$

$$y = x^2 - 4x - 17$$

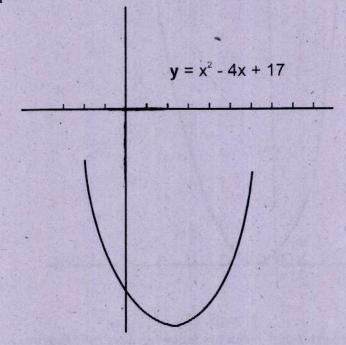
SOLUTION
$$y = x^2 - 4x - 17$$

$$\frac{-\mathbf{b}}{2\mathbf{a}} = \frac{-(-4)}{2(1)} = \frac{4}{2} = 2$$

$$f\left(\frac{-b}{2a}\right) = f(2) = (2)^2 - 4(2) - 17 = 4 - 8 - 17 = -21$$

was almed			10	21	N
Hence	venex	15	(2.	-4	

x	-2	-1	0	1	2	3	4	5	6
x ²	4	1	0	1	4	9	16	25	36
-4x	8 -	4	0	-4,	-8	-12	-16	20	-24
-17	-17	-17	-17	-17	-17	-17	-17	-17	-17
$y = x^2 - 4x - 17$	-5	-12	-17	-20	-21	-20	-17	-12	-5



-:5.48:-

Find the vertex and graph the following quadratic function: $y = x^2 - x + 6$

$$y = x^2 - x + 6$$

SOLUTION

$$y = x^2 - x + 6$$

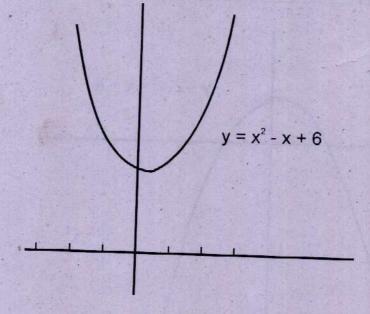
$$\frac{-b}{2a} = \frac{-(-1)}{2(1)} = \frac{1}{2}$$

$$f\left(\frac{-b}{2a}\right) = f\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 6$$

$$= \frac{1}{4} - \frac{1}{2} + 6 - \frac{23}{4} = 5\frac{3}{4}$$

$$\text{Vertex is } \left(\frac{1}{2}, \frac{23}{4}\right)$$

x	-2	-1	0	1/2	1	2	3
\mathbf{x}^2	4	1	0	1/4	1	4	9
-X	2	1	0	-1/2	-1	-2	-3
. 6	6	6	6	6	6	6	6
$y = x^2 - x + 6$	12	8	6	23/4	6	8 .	12



-:5.49:-

Find the vertex and graph the following quadratic function: $y = -2x^2 - x + 4$

SOLUTION

$$y = -2x^{2} - x + 4$$

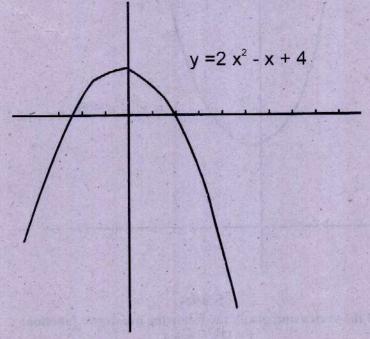
$$\frac{-b}{2a} = \frac{(-1)}{2(2)} = \frac{1}{-4} = -\frac{1}{4}$$

$$f\left(\frac{-b}{2a}\right) = f\left(-\frac{1}{4}\right) = -2\left(-\frac{1}{4}\right)^{2} - \left(\frac{1}{4}\right) + 4$$

$$= -\frac{1}{8} + \frac{1}{4} + 4 = \frac{1 + 2 + 32}{8} = \frac{33}{8} - 4\frac{1}{8}$$

Hence vertex is $\left(-\frac{1}{4}, \frac{33}{8}\right)$

1	-3	-2	-1	-1/4	0	1	2	3
-2x ²	-18	-8	-2	-1/8	0	-2	-8	-18
-X	3	2	1	1/4	0	-1	-2	-3
4	4	4	4	4	4	4	4	4
$v = 2x^2 - x + 4$	-11	-2	3	33/8	. 4	1	-6	-17



-:5.50:-

Represent each of the following functions by a table and by a graph, letting x take on values within the limits indicated.

- y = 2x 3
- x between 0 and 8
- 3y = 6 xb)
- x between 1 and 5 x between -2 and 5
- $y = x^2 4x 1$ c) $y = 16 + 10 - x^2$ d)
- x between a and b

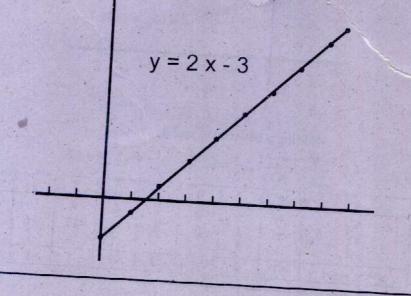
SOLUTION

(a)
$$y = 2x - 3$$

Putting x between 0 and 8
 $y = 2(0) - 3 = 0 - 3 = -3$
 $y = 2(1) - 3 = 2 - 3 = -1$
 $y = 2(2) - 3 = 4 - 3 = 1$
 $y = 2(3) - 3 = 6 - 3 = 3$
 $y = 2(4) - 3 = 8 - 3 = 5$
 $y = 2(5) - 3 = 10 - 3 = 7$
 $y = 2(6) - 3 = 12 - 3 = 9$

				2 - 7	
V=	2(7) -	3 =	14	3-1	1
-	-6.7			2-1	1
V =	2(8) -	3 =	16	2 - 1	,

			y - 2	(8) - 5 =	= 16 - 3	= 13			
X	0	1	2	3	4	5	6.	7	0
y	-3	-1	1	3	5	7	0	1	0

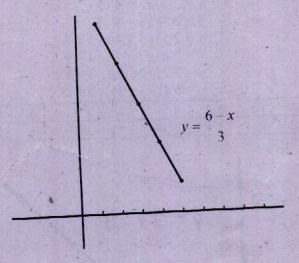


$$3y = 6 - x$$
$$y = \frac{6 - x}{3}$$

Putting x between 1 and 5

$$y = \frac{6-1}{3} = \frac{5}{3}$$
. $y = \frac{6-2}{3} = \frac{4}{3}$. $y = \frac{6-3}{3} = \frac{3}{3} = 1$.
 $y = \frac{6^8 + 4}{3} = \frac{2}{3}$. $y = \frac{6-5}{3} = \frac{1}{3}$

X	1	2	3	4	5
y :	5/3	4/3	1	2/3	1/3



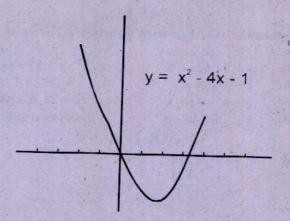
(c)

$$y = x^2 - 4x - 1$$

Putting x between -2 and 5

Putting x between -2 and 3
$$\frac{-b}{2a} = \frac{-(-4)}{2(1)} = \frac{4}{2} = 2, \ f\left(\frac{-b}{2a}\right) = 4 - 8 - 1 = -5$$

2a	4(1)				2	2	4	5
	-2	-1	0	1	2	3	7	25
X	1	1	0	1	4	9	16	25
X	4		0	1	-8	-12	-16	-20
-4x	8	4	0		1	1	-1	-1
1	-1	-1	-1	-1	-1	0.74	1	1
2	11	4	-1	-4	-5	-4	-1	
$y = x^{2} - 4x - 1$	11							

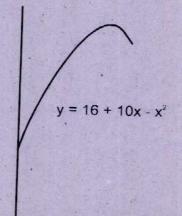


(d)

$$y = 16 + 10 - x^{2}$$
Putting x between -2 and 5
$$\frac{-b}{2a} = \frac{-(10)}{2(-1)} = \frac{-10}{-2} = 5$$

$$f\left(\frac{-b}{2a}\right) = f(5) = 16 + 10(5) - (5)^2 = 16 + 50 - 25 = 41$$

X	0	1	2	3	4	5	6
16	16	. 16	16	16	16	16	16
10x	0	10	20	30	40	50	60
-X	0	-1	-4	-9	-16	-25	-36
$y = 16 + 10x - x^2$	16	25	32	37	40	41	40



-:5.51:-

Determine whether each function's vertex is minimum or maximum.

$$\mathbf{i)} \qquad \mathbf{y} = 8\mathbf{x} + 2\mathbf{x} - \mathbf{x}^2$$

$$y = 8x + 2x - x^2$$
 ii) $y = x^2 + 2x$
 $y = x^2/2 + x$ iv) $y = -4 + 7x$

iii)
$$y = x^2/2 + x$$

iv)
$$y = -4 + 7x - 4x^2$$

1)
$$y = 8x + 2x - x$$

11) $y = x^2 + 2x$
11) $y = x^2 + 2x$
12. iv) $y = -4 + 7x - 2$
13. iv) $y = -4 + 7x - 2$
14. iv) $y = -4 + 7x - 2$
15. x between -2 and 5 x between a and b

SOLUTION

(i)
$$y = 8 + 2x - x^2$$

 $\frac{-b}{2a} = \frac{-(2)}{2(-1)} = \frac{-2}{-2} - 1$
 $f\left(\frac{-b}{2a}\right) = f(1) = 8 + 2(1) - (1)^2 = 8 + 2 - 1 - 9$

Vertex is (1, 9), as a < 0 vertex is maximum

(ii)
$$y = x^{2} + 2x$$

$$\frac{-b}{2a} = \frac{-(2)}{2(1)} = -1$$

$$f\left(\frac{-b}{2a}\right) = f(-1) = 1 + 2(-1)^{2} = 1 - 2 = -1$$

Vertex is (-1, -1), as a > 0 vertex is maximum

(iii)
$$y = \frac{x^2}{2} + x$$

$$\frac{-b}{2a} = \frac{-1}{2(\frac{1}{2})} = \frac{-1}{1} = -1$$

$$f\left(\frac{-b}{2a}\right) = f(-1) = \frac{1}{2} - 1 = -\frac{1}{2}$$

Vertex is $(-1, -\frac{1}{2})$, as a > 0, vertex is maximum

(iv)
$$y = -4 + 7x - 4x^{2}$$

 $\frac{-b}{2a} = \frac{-(7)}{2(-4)} = \frac{-7}{-8} = \frac{7}{8}$
 $f\left(\frac{-b}{2a}\right) = f\left(\frac{7}{8}\right) = -4 + 7\left(\frac{7}{8}\right) - 4\left(\frac{7}{8}\right)^{2}$

$$f\left(\frac{-b}{2a}\right) = -4 + \frac{49}{8} - 4 \cdot \frac{49}{64} = -4 + \frac{49}{8} - \frac{49}{16}$$
$$= \frac{-64 + 98 - 49}{16} = -\frac{15}{16}$$

Hence vertex is $\left(\frac{7}{8}, \frac{-15}{10}\right)$, as a < 0 vertex is maximum

SET-B

-:5.1:-

The population size y of a certain city at time t is given by

$$y = f(t) = 4t^2 + 2t$$

(a) What is f(1), (b) What is f(2) and (c) What is f(3)

SOLUTION

$$y = f(t) = 4t^2 + 2t$$

(a)
$$f(1) = 4(1)^2 + 2(1) = 4 + 2 = 6$$

(b)
$$f(2) - 4(2)^2 + 2(2) - 16 + 4 = 20$$

(c)
$$f(3) = 4(3)^2 + 2(3) = 36 + 6 = 42$$

-:5.2:-

A train traveled 60 miles the first hour and 50 miles each hour thereafter. Find the function which gives the distance covered in t hours. Also find the distance covered in one hour, 2 hour, 3 hours and 4 hours.

SOLUTION

Here total time = t hours

Speed of first hour = 60 miles

Speed of remaining (t-1) hours = 50 miles each hour

So Function =
$$f(t) = 50(t-1) + 60$$

$$f(1) = 50(1-1) + 60 = 50(0) + 60 = 60$$
 miles

$$f(2) = 50(2-1) + 60 - 50 + 60 = 110$$
 miles

$$f(3) = 50(3-1) + 60 = 100 + 60 = 160$$
 miles

$$f(4)$$
 = 50(4 - 1) + 60 = 150 + 60 = 210 miles

-:5.3:-

Find the quantity demanded from the following function when price (P) is 5, 10, 15, 20, 25. If $q_d = 5 + 2P$

SOLUTION

Here quantity demand function is

-:5.4:-

Find the quantity demanded from the following function when price (P) is 20, 40, 60, 80, 100. If $q_d = 300 - 3P$

SOLUTION

Here quantity demand function is

$$\begin{array}{c} q_d = 300 - 3P \\ \text{When P} = 20 \\ \text{When P} = 40 \\ \text{When P} = 60 \\ \text{When P} = 80 \\ \text{When P} = 100 \\ \end{array} \qquad \begin{array}{c} q_d = 300 - 3(20) = 300 - 60 = 240 \\ q_d = 300 - 3(40) = 300 - 120 = .180 \\ q_d = 300 - 3(60) = 300 - 180 = 120 \\ q_d = 300 - 3(80) = 300 - 240 = 60 \\ q_d = 300 - 3(100) = 300 - 300 = 0 \end{array}$$

If the demand function and supply function for a specified per meter cloth are: P + 2q = 100 and 45P - 20q = 350 respectively, compare the quantity demanded and quantity supplied when P = 14. Are there surplus cloth or not enough to meet demand.

SOLUTION

Here quantity demand function is

$$P + 2q = 100$$

Price = P = 14

The quantity demanded when P = 14 is

$$14 - 2q = 100$$

$$2q = 100 - 14$$

$$2q = 86$$

$$q = 43$$

The supply function is 45P - 20q = 350

The quantity supplied when price = P = 14 is

$$45(14) - 20q = 350$$

$$630 - 20q = 350$$

$$-20q = 350 - 630$$

$$-20q = -280$$

$$q = 14$$

Cloth is no enough to meet the demand.

-:5.6:-

A factory determines that the overheads for producing a quantity of a certain items is Rs. 300 and the cost of each item is Rs. 20. Express the total expenses as a function of the number of items produced and compute the expenses for producing 12, 25, 50, 75 and 100 items.

SOLUTION

Let n represent the number of items produced. Then 20n + 300 represent the total expenses. Let we use E to represent the expenses function, so that we have

E(n) = 20n + 300, where n is a whole number We obtain:

$$E(12) = 20(12 + 300 - 240 + 300 = 540$$

$$E(25) = 20(25) + 300 = 500 + 300 = 800$$

$$E(50) = 20(50) + 300 = 1000 + 300 = 1300$$

$$E(75) = 20(75) + 300 = 1500 + 300 = 1800$$

$$E(100) = 20(100) + 300 = 2000 + 300 = 2300$$

-:5.7:-

Suppose that the cost function for producing certain items is given by C(n) = 3n + 5, where n represent the number of items produced. Compute C(150), C(500), C(750) and C(1500)

SOLUTION

Cost function is

$$\begin{array}{c} C(n) = 3n + 5 \\ \text{When} \\ n = 150 \qquad C(150) = 3(150) + 5 = 450 + 5 = \text{Rs.} \, 455 \\ n = 500 \qquad C(500) = 3(500) + 5 + 1500 + 5 = \text{Rs.} \, 1505 \\ n = 750 \qquad C(750) = 3(750) + 5 = 2250 + 5 = \text{Rs.} \, 2255 \\ n = 1500 \qquad C(1500) = 3(1500) + 5 = 4500 + 5 = \text{Rs.} \, 4505 \\ \end{array}$$

-:5.8:-

The profit function for selecting items is given by $P(n) = -n^2 + 500n + 61500$ Compute P(200), P(230), P(250) and P(260).

SOLUTION

Here

$$P(200) = -n + 500n + 61500$$

$$= -(200)^{2} + 500(200) + 61500$$

$$= -40000 + 100000 + 61500$$

$$= -40000 + 161500 = 121500$$

$$= -(230)^{2} + 500(230) + 61500$$

$$= -52900 + 115000 + 61500$$

$$= -52900 + 176500 = 123600$$

$$P(250) = -(250)^{2} + 500(250) + 61500$$

$$= -62500 + 125000 + 61500$$

$$= -62500 + 186500 = 124000$$

$$P(260) = -(260)^{2} + 500(260) + 61500$$

$$= -67600 + 130000 + 61500$$

$$= -67600 + 191500 = 123900$$

-:5.9:-

The height of a projectile fired vertically into the air at an initial velocity of 64 feet per second is a function of the time (t) and is given by $h(t) = 64t - 16t^2$

Compute h(1), h(2), h(3) and h(4)

SOLUTION

Here function of height

$$h(t) = 64t - 16t$$

When

$$h(1) = 64(1) - 16(1)^2 = 64 - 16 = 48$$
 feet

h(2) =
$$64(2) - 16(2)^2 = 128 - 16(4) = 128 - 64 = 64$$
 feet
h(3) = $64(3) - 16(3)^2 = 192 - 16(9) = 192 - 144 = 48$ feet
h(4) = $64(4) - 16(4)^2 = 256 - 16(16) = 256 - 256 = 0$ feet

-:5.10:-

A car rental agency charges Rs. 500 per day plus Rs. 1.25 a mile. Therefore, the daily charge for renting a car is a function of the number of miles travel (m) and can be expressed as:

C(m) = 500 + 1.25m

Compute C(75), C(100), C(150) and C(500)

SOLUTION

Here
$$C(m) = 500 + 1.25m$$

When $C(75) = 500 + 1.25(75) = 500 + 93.75 = Rs. 593.75$
 $C(100) = 500 + 1.25(100) = 500 + 125 = Rs. 625$
 $C(150) = 500 + 1.25(150) = 500 + 187.50 = Rs. 687.50$
 $C(500) = 500 + 1.25(500) = 500 + 625 = Rs. 1125$

-:5.11:-

A producer knows that he can sells as many items at Rs. 0.25 each as he can produce in a day. If the cost function is

$$C(x) = Rs. 0.20x + Rs. 70$$

Find the break even point.

SOLUTION

The amount received function for this problem would be $R(x) = Rs. \ 0.25x$. At break-even point the amount received must equal to the cost. Setting these two quantities equal gives:

$$R(x) = C(x)$$

$$0.25x = Rs. 20x + Rs. 70$$

$$0.25x - 0.20x = 70 \Rightarrow 0.05x = 70$$

x = 1400

Substituting this value into R(x)=0.25x

R(1400) = 0.25(1400) = 350

Hence break-even point is 1400, 350.

-:5.12:-

A firm knows that it can sells as many items at Rs. 1.25 each as it can produce in a day. If the cost function is C(x)=0.90x+Rs. 105. Find the break-even point.

SOLUTION

The amount received function for this problem is R(x)=Rs. 1.25x. At the break-even point, the amount received must equal to cost

$$R(x) = C(x)$$

$$Rs. 1.25x = Rs. 0.90x + Rs. 105$$

$$1.25x - 0.90x = 105$$

$$0.35x = 105$$

$$x = \frac{105}{0.35} = \frac{10500}{35}$$

$$x = 300$$

Substituting this value into R(x) = 1.25x

$$R(300) = 1.25(300) = 375$$

Hence break-even point is 300, 375

-:5.13:-

The cost function for storing a particular item at XYZ corporation was found to be f(x) = 0.005x + 0.80 where x is the cost of the item. What is the cost of storing 84 items.

SOLUTION

Here

$$f(x) = 0.005x + 0.80$$

 $f(84) = 0.005(84) + 0.80 = 0.42 + 0.80 = 1.22$

-:5.14:-

Suppose a calculator has the total cost function C(x)=17+3400 and the revenue function R(x)=34x

- a) What is the equation of the profit function for the calculator?
- b) What is the profit on 300 units?

SOLUTION

(a)
$$P(x) = R(x) - C(x)$$
Profit Function = Revenue Function - Cost Function
$$= 34x - (17x + 3400)$$

$$= 34x - 17x - 3400$$

$$= 17x - 3400$$

(b) Profit on 300 units P(300) = 17(300) - 3400= 5100 - 3400 = Rs. 1700