
123

Computational
Thinking

UNIT

7
Student Learning Outcomes
By the end of this chapter, you will be able to:

• Define computational thinking and its key components: decomposition,
pattern recognition, abstraction, and algorithms.

• Explain the principles of computational thinking, including problem
understanding, problem simplification, and solution selection and design.

• Describe algorithm design methods, specifically flowcharts and
pseudocode, and understand the differences between them.

• Create and interpret flowcharts to represent algorithms visually.
• Write pseudocode to outline algorithms in a structured, human-readable

format.
• Engage in algorithmic activities, such as design and evaluation techniques.
• Conduct dry runs of flowcharts and pseudocode to manually verify their

correctness.
• Understand the concept and importance of LARP (Logic of Algorithms for

Resolution of Problems).
• Implement LARP activities to practice writing algorithms and drawing

flowcharts.
• Identify different types of errors in algorithms, including syntax errors,

logical errors, and runtime errors.
• Apply debugging techniques to find and fix errors in algorithms.
• Recognize common error messages encountered during LARP and learn

how to address them.
• Demonstrate problem-solving skills by applying computational thinking

principles to real- world scenarios.
• Evaluate the efficiency of different algorithms and improve them based

on performance analysis.

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Not
for

 Sale

PCTB

124

Introduction
Introduction Computational thinking is an essential skill that enables individuals
to solve complex problems using methods that align with processes involved in
computer science. This chapter begins by defining computational thinking and
breaking it down into its fundamental components: decomposition, pattern
recognition, abstraction, and algorithms. These components are essential for
simplifying complicated problems, identifying patterns that can lead to
solutions, focusing on relevant details while ignoring unnecessary ones, and
creating step-by-step procedures for solving problems. Understanding these
concepts is not only beneficial for computer scientists but also for anyone
looking to improve their problem-solving skills across various fields.
In addition to defining computational thinking, this chapter explores the
principles that guide it, such as understanding the problem at hand, simplifying it
to make it more manageable, and selecting the best solution design. The chapter
introduces different methods for designing algorithms, including the use of
flowcharts and pseudocode, and explains how to distinguish between these two
approaches. Furthermore, it emphasizes the importance of practicing algorithm
design and evaluation through hands-on activities like LARP (Logic of
Algorithms for Resolution of Problems). Lastly, the chapter covers essential
aspects of error identification and debugging, providing techniques for
recognizing and fixing common errors encountered during the implementation
of algorithms. By mastering these skills, students will be well-equipped to tackle
a wide range of computational problems efficiently and effectively.

7.1 Definition of Computational Thinking
Computational Thinking (CT) is a problem-solving process that involves a set of
skills and techniques to solve complex problems in a way that a can be executed
by a computer. This approach can be used in various fields beyond computer
science, such as biology, mathematics, and even daily life

Computational thinking is not limited to computer science. It
is used in everyday problem solving, such as planning a trip or
organizing tasks.

Let's break down computational thinking into its key components:

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Not
for

 Sale

PCTB

125

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.1.1 Decomposition
Decomposition is the method of breaking down a complicated problem into

smaller, more convenient components.
Decomposition is an important step in computational thinking. It involves

dividing a complex problem into smaller, manageable tasks. Let's take the

example of building a birdhouse. This task might look tough at first, but if we

break it down, we can handle each part one at a time.
Here's how we can decompose the task of building a birdhouse. Figure 7.1 shows

the decomposed tasks for building a birdhouse.

• Decide on the size, shape, and design. Sketch a plan Design the Birdhouse:

and gather all necessary measurements.

• List all the materials needed such as wood, nails, paint, and Gather Materials:

tools like a hammer and saw.

• Measure and cut the wood into the required pieces according Cut the Wood:

to the design.

• Follow the plan to assemble the pieces of wood Assemble the Pieces:

together to form the structure of the birdhouse.

• Paint the birdhouse and add any decorations to make it Paint and Decorate:

attractive for birds.

• Find a suitable location and securely install the Install the Birdhouse:

birdhouse where birds can easily access it.

Figure 7.1: Building a Birdhouse

Not
for

 Sale

PCTB

126

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.1.2 Pattern Recognition
Pattern recognition involves looking for similarities or patterns among and
within problems. For instance, if you notice that you always forget your
homework on Mondays, you might recognize a pattern and set a reminder
specifically for Sundays.
Pattern recognition is an essential aspect of computational thinking. It involves
identifying and understanding regularities or patterns within a set of data or
problems. Let's consider the example of recognizing patterns in the areas of
squares.
The upper row in Figure 7.2 represents the side lengths of squares, ranging from
1 to 7. The lower row shows the corresponding areas of these squares. Here, we
can observe a pattern in how the areas increase.

2• Side Length 1: Area = 1 = 1
2• Side Length 2: Area = 2 = 4 (1 + 3)
2• Side Length 3: Area = 3 = 9 (1 + 3 + 5)
2• Side Length 4: Area = 4 = 16 (1 + 3+ 5 + 7)
2• Side Length 5: Area = 5 = 25 (1 + 3 + 5+ 7 + 9)
2• Side Length 6: Area = 6 = 36 (1 + 3 + 5+ 7 + 9 + 11)
2• Side Length 7: Area = 7 = 49 (1 + 3 + 5 + 7 + 9 + 11+ 13)

We can see that the area of each square can be calculated by adding consecutive
odd numbers. For example, the area of a square with a side length of 3 can be
found by adding the first three odd numbers: 1 + 3 + 5 = 9.

Decompose a Task
Think of a complex task you do regularly, like organizing a school event
or cooking a meal. Break it down into smaller, manageable parts. Write
down each step and discuss with your classmates how decomposition
makes the task easier to handle.

Class activity

Figure 7.2: Pattern in areas of squares with sides from 1 to 7

Visual/Numerical Pattern
Goes up by 1

Goes up by consecutive odd numbers starting at 3

Not
for

 Sale

PCTB

127

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.1.3 Abstraction
Abstraction is a fundamental concept in problem solving, especially in computer
science. It involves simplifying complex problems by breaking them down into
smaller, more manageable parts, and focusing only on the essential details while
ignoring the unnecessary ones. This helps in understanding, designing, and
solving problems more efficiently.

• Definition: Abstraction is the process of hiding the complex details while

exposing only the necessary parts. It helps reduce complexity by allowing us

to focus on the high-level overview without getting lost in the details.

• Example: Making a Cup of Tea - High-level Steps: 1. Boil water. 2. Add tea

leaves or a tea bag. 3. Steep for a few minutes. 4. Pour into a cup and add

milk/sugar if desired.

Create a table with side lengths from 1 to 10. Calculate the areas of the
squares using the pattern of adding consecutive odd numbers. Verify your
results by squaring the side lengths and see if the pattern holds.

Class activity

When solving complex problems, try to break them down into smaller parts
and focus on the main steps. This will helps you understand the problem
better and find a solution more easily. By using abstraction, we can tackle
complex problems by dealing with them at a higher level.

7.1.3 Algorithms

An algorithm is a step-by-step
collection of instructions to solve a
problem or complete a task similar to
following a recipe to bake a cake..

An algorithm is a precise sequence of
instructions that can be followed to
achieve a specific goal, like a recipe or a
set of directions that tells you exactly
what to do and in what order.

Figure 7.3: Algorithm example: Recipe
to bake a cake

Not
for

 Sale

PCTB

128

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

• Example 1: Baking a Cake: In Figure7.3, we see a recipe for baking a cake. The

recipe provides a list of ingredients and step-by-step instructions to mix

them and bake the cake. This is an example of an algorithm because it

outlines a clear sequence of steps to achieve the goal of baking a cake.

• Example 2: Planting a Tree: Here is a simple algorithm to plant a tree, an

activity that can be very meaningful and beneficial:

1. Choose a suitable spot in your garden.

2. Dig a hole that is twice the width of the tree's root ball.

3. Place the tree in the hole, making sure it is upright.

4. Fill the hole with soil, pressing it down gently to remove air pockets.

5. Water the tree generously to help it settle.

6. Add mulch around the base of the tree to retain moisture.

7. Water the tree regularly until it is established.
This algorithm gives clear instructions on how to plant a tree, making it easy
to follow for anyone.

Let's create an algorithm! Think of something you do every day, like
brushing your teeth or packing your school bag. Write down the steps
you follow, one by one. Share your algorithm with your class and see if
your friends can follow it!

Did you know that algorithms are not just used in computers?
They are everywhere! When you follow directions to your
friend's house or play a board game with rules, you are using
algorithms. Algorithms help us solve problems logically.

• Outline an algorithm for applying to the Board of Intermediate and
Secondary Education (BISE) for 9 Grade Examination.th

Algorithm Challenge
• Work in pairs to create an algorithm for a common task, such as making

a sandwich or getting ready for school. Write down each step clearly,
then exchange algorithms with another pair. Follow their algorithm
exactly as written and see if you can complete the task.

Class activity

Class activity

Not
for

 Sale

PCTB

129

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.2 Principles of Computational Thinking
Computational thinking involves several key principles that guide the process of
problem-solving in a structured manner.

7.2.1 Problem Understanding
Understanding a problem involves identifying the core issue, defining the
requirements, and setting the objectives. Understanding the problem is the first
and most important step in problem-solving, especially in computational
thinking. This involves thoroughly analyzing the problem to identify its key
components and requirements before attempting to find a solution.

“If I had an hour to solve a problem I'd spend 55 minutes thinking about the
problem and 5 minutes thinking about solutions”. — Albert Einstein

Importance of Problem Understanding:

• By fully understanding the problem, you gain clarity on Clarity and Focus:

what needs to be solved. This helps you focus on the right aspects without

getting distracted by irrelevant details.

• Proper understanding of the problem allows you to define Defining Goals:

clear and achievable goals. You can determine what the final outcome should

look like and set specific objectives to reach that outcome.

• When you comprehend the problem well, you can Efficient Solutions:

devise more efficient and effective solutions. You can choose the best

methods and tools to address the problem, saving time and resources.

• By thoroughly understanding the problem, you can Avoiding Mistakes:

avoid common pitfalls and mistakes. Misunderstanding the problem can lead

to incorrect solutions and wasted effort.
Example: Building a School Website
Imagine you are asked to build a website for your school. Before jumping into
coding, you need to understand the problem:

1. What features does the website need? For example, Identify Requirements:

pages for news, events, class schedules, and contact information.

2. Who will use the website? Students, teachers, parents? User Needs:

Understanding your audience helps in designing user-friendly interfaces.

3. What resources and tools are available? Do you have Technical Constraints:

access to a web server and the necessary software?
By understanding these aspects, you can plan and build a website that meets the
needs of your school community.

Not
for

 Sale

PCTB

130

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.2.2 Problem Simplification

Simplifying a problem involves breaking it down into smaller, more manageable

sub-problems. Example: To design a website, break down the tasks into

designing the layout, creating content, and coding the functionality.

7.2.3 Solution Selection and Design
Choosing the best solution involves evaluating different approaches and
selecting the most efficient one. Designing the solution requires creating a
detailed plan or algorithm.

7.3 Algorithm Design Methods
Algorithm design methods provide a range of tools and techniques to tackle
various computational problems effectively. Each method has its strengths and
weaknesses, making it suitable for different types of problems. Understanding
different methods allows one to choose the most appropriate approach for a
given problem, leading to more efficient and elegant solutions. Let's discuss two
of these methods.

7.3.1 Flowcharts
Flowcharts are visual representations of the steps in a process or system,
depicted using different symbols connected by arrows. They are widely used in
various fields, including computer science, engineering, and business, to model
processes, design systems, and communicate complex workflows clearly and
effectively.

7.3.1.1 Importance of Flowcharts

• : Flowcharts provide a clear and concise way to represent processes, Clarity

making them easier to understand at a glance.

• They are excellent tools for communicating complex Communication:

processes to a wide audience, ensuring everyone has a common

understanding.

• Flowcharts help identify bottlenecks and inefficiencies in a Problem Solving:

process, aiding in problem-solving and optimization.

• They serve as essential documentation for systems and Documentation:

Always take time to thoroughly understand a problem before starting to
solve it. Ask questions, gather information, and clarify any doubts. This
foundational step will lead to better and more effective solutions.

Not
for

 Sale

PCTB

131

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

processes, which is useful for training and reference purposes.

The first standardized flowchart symbols were developed in
1947 by the American National Standards Institute (ANSI).

Symbol Name Description

 Oval (Terminal) Represents the start or end of a

process. Often labeled as

"Start" or "End."

 Rectangle

(Process)

Represents a process, task, or

operation that needs to be

performed.

 Parallelogram

(Input/Output)

Represents data input or

output (e.g., reading input from

a user or displaying output on

a screen).

 Diamond

(Decision)

Represents a decision point in

the process where the flow can

branch based on a yes/no

question or true/false

condition.

 Arrow (Flowline) Shows the direction of flow

within the flowchart,

connecting the symbols to

indicate the sequence of steps.

Table 7.1: Flowchart symbols

7.3.1.2 Flowchart Symbols

Flowchart symbols are visual representations used to illustrate the steps and flow
of a process or system as shown in Table 7.1.

Not
for

 Sale

PCTB

132

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Flowcharts were popularized by computer scientists such as
John von Neumann and Herman Goldstine in the early days of
computing.

Figure 7.4: Flowchart of the Shop Order Process

Create a flowchart for a daily routine activity, such as getting ready for
school. Include decision points like choosing what to wear based on
the weather.

Class activity

the customer

Example: A Shop Near Your House: Suppose a shop takes orders via cell phone

messages. The flowchart in Figure 7.4 outlines the order processing steps. The

input is the order, and the outputs are item delivery or a notification to the

customer if the item is unavailable.

Not
for

 Sale

PCTB

133

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

 Decisions are made regarding item availability and customer payment. If the

customer does not accept the item or make the payment, the item is returned to

the shop, and the customer rating is decreased by 1. The customer's rating

increases by 1 if they pay for the item. If the item is unavailable, the shop notifies

the customer; otherwise, the shop picks, packs, and ships the item.
Enhancing Flowchart by Using Customer Rating
Note that while the customer rating is included in the flowchart shown in Figure
7.4, it is not utilized. Let's revise the flowchart to ensure only customers with a
rating greater than 0 are attended to. The updated flowchart is shown in Figure
7.5.

Figure 7.5: Flowchart of the shop using customer's rating

Not
for

 Sale

PCTB

134

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Example: A flowchart for a login system showing steps such as inputting a

username and password, verifying credentials, and granting access shown in

Figure 7.6. A user can make a maximum of five attempts.

Figure 7.6: Flowchart for a login system

7.3.2 Pseudocode
Pseudocode is a method of representing an algorithm using simple and informal
language that is easy to understand. It combines the structure of programming

Modify Figure 7.5 to ensure that customer ratings are within the valid

range of 0 to 5, inclusive. Ratings cannot be negative or exceed 5

Class activity

Class activity

Draw a flowchart for selecting the school cricket team. The team can have

a maximum of 11 players, and each player must have parental permission.

Not
for

 Sale

PCTB

135

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

clearity with the readability of plain English, making it a useful tool for planning
and explaining algorithms.
What is Pseudocode?
Pseudocode is not actual code that can be run on a computer, but rather a way to
describe the steps of an algorithm in a manner that is easy to follow. It helps
programmers and students focus on the logic of the algorithm without worrying
about the syntax of a specific programming language.
Example-1
Determining whether a number is even or odd is a fundamental task in
programming and computer science. An even number is divisible by 2 without
any remainder, whereas an odd number has a remainder of 1 when divided by 2.
Below is the pseudocode for this process, followed by an explanation.
Algorithm 1 Pseudocode for determining if a number is even or odd.

1: Procedure CheckEvenOdd(number)

2: Input: number {The number to be checked}

3: Output: "Even" if number is even, "Odd" if number is odd

4: Begin

5: if (number % 2 == 0) then

6: print "Even"

7: else

8: print "Odd"

9: End if

10: End

Explanation
1. The pseudocode begins with the declaration of the Procedure Declaration:

procedure 'CheckEvenOdd' which takes a single input, 'number'.
2. The procedure accepts a variable 'number' which is the integer to be Input:

checked.
3. The procedure outputs "Even" if the number is even, and "Odd" if the Output:

number is odd.
4. Mark the start of the procedure. Begin:
5. The condition 'if (number % 2 == 0)' checks if the Condition Check:

remainder of the number when divided by 2 is zero. The modulo operator '%'
is used for this purpose.

6. If the condition is true, the procedure prints "Even". Even Case:
7. : If the condition is false, the procedure prints "Odd". Odd Case
8. Marks the end of the procedure.End:

Not
for

 Sale

PCTB

136

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Example-2
Determining whether a number is prime is a fundamental task in number theory
and computer science. A prime number is a natural number greater than 1 that
has no positive divisors other than 1 and itself. Below is the pseudocode for this
process, followed by an explanation.
Algorithm 2 Pseudocode for determining if a number is prime.

1: Procedure Is Prime(number)

2: number {The number to be checked}Input:

3: True if number is prime, False otherwiseOutput:

4: Begin

5: if (number <= 1) then

6: return False

7: end if

8: for i from 2 to sqrt(number) do

9: if (number % i == 0) then

10: return False

11: end if

12: end for

13: return True

14: End

Explanation

1. The pseudocode begins with the declaration of the Procedure Declaration:

procedure 'IsPrime' which takes a single input, 'number'.

2. The procedure accepts a variable 'number', the integer to be checked. Input:

3. The procedure will output 'True' if the number is prime, and 'False' Output:

otherwise.

4. Mark the start of the procedure. Begin:

5. The condition 'if (number <= 1)' checks if the number is less Initial Check:

than or equal to 1. If true, the procedure returns 'False' because numbers less

than or equal to 1 are not prime.

6. The 'for' loop iterates from 2 to the square Loop Through Possible Divisors:

root of the integer. This is because a greater factor of the number is a multiple

of a previously tested smaller factor.

7. Inside the loop, the condition 'if (number % i == 0)' Divisibility Check:

Not
for

 Sale

PCTB

137

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

checks if the number is divisible by 'i' without a remainder. If true, the

procedure returns 'False' because the number has a divisor other than 1 and

itself.

8. If no divisors are found in the loop, the procedure Prime Confirmation:

returns 'True', confirming the number is prime.

9. Marks the end of the procedure.End:

Why Use Pseudocode?
Using pseudocode has several benefits:

• It helps in understanding the logic of the algorithm without worrying Clarity:

about syntax.

• It allows programmers to outline their thoughts and plan the steps Planning:

of the algorithm.

• It is a universal way to convey the steps of an algorithm, Communication:

making it easier to discuss with others.

•
7.3.3 Differentiating Flowcharts and Pseudocode
Flowcharts and pseudocode are both tools used to describe algorithms, but they
do so in different ways. Understanding their differences can help you decide
which method is more suitable to use for your scenario.

Pseudocode is often used in software development before
writing the actual code to ensure that the logic is sound and to
facilitate communication between team members who may
be using different programming languages.

Create Your Own Pseudocode: Divide the students into small groups and
assign each group a different simple problem, such as finding the
maximum number in a list or calculating the factorial of a number. Ask
them to write the pseudocode for their assigned problem and then
present it to the class.

Class activity

Not
for

 Sale

PCTB

138

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Pseudocode Flowcharts

· Pseudocode uses plain language

and structured format to describe

the steps of an algorithm.

· It is read like a story, with each

step is written out sequentially.

· Pseudocode communicates the

steps in a detailed, narrative -like

format.

· It is particularly useful for

documenting algorithms in a way

that can be easily converted into

actual code in any programming

language.

· Flowcharts use graphical symbols

and arrows to represent the flow

of an algorithm.

· It is like watching a movie, where

each symbol (such as rectangles,

diamonds, and ovals) represents

a different type of action or

decision, and arrows indicate the

connection and direction of the flow.

· Flowchart c ommunicates the

process in a visual format, which

can be more intuitive for

understanding the overall flow

and structure.

· They are useful for identifying the

steps and decisions in an

algorithm at a glance.

Example-3
Algorithm 3 presents the pseudocode for checking a valid username and
password.

1. Procedure CheckCredentials(username, password)

2. Input: username, password

3. Output: Validity message

4. Begin

5. validUsername = "user123" {Replace with the actual valid username}

6. validPassword = "pass123" {Replace with the actual valid password}

7. if (username == validUsername) then

Table 7.2 Difference between Pseudocode and Flowcharts Not
for

 Sale

PCTB

139

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

8: if (password == validPassword) then

9: print "Login successful"

10: else

11: print "Invalid password"

12: end if

13: else

14: print "Invalid username"

15: end if

16: End

7.4 Algorithmic Activities

7.4.1 Design and Evaluation Techniques
Techniques to essential algorithms are essential to understand how efficiently
they solve problems. In this section, we will explore different techniques for
evaluating algorithms, focusing on their time and space complexities.

7.4.1.1 Time Complexity
Time Complexity measures how fast or slow an algorithm performs. It shows how
the running time of an algorithm changes as the size of the input increases.
Here's an easy way to understand it:
Imagine you have a list of names, and you want to find a specific name. If you
have 10 names, it might only take a few seconds to look through the list. But what
if you have 100 names? Or 1,000 names? The time it takes to find the name
increases as the list gets longer. Time complexity helps us understand this
increase.

Time complexity is usually expressed using Big notation, O
like (), (), or (²). It helps us compare different O n O logn O n
algorithms to see which one is faster!

When writing an algorithm, consider how many steps it takes to complete
the task. Fewer steps means a faster algorithm!

Not
for

 Sale

PCTB

140

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.4.1.2 Space Complexity

Space complexity measures the amount of memory an algorithm uses relative to
input size. It is essential to consider both the memory required for the input and
any extra memory used by the algorithm.

Designing and evaluating algorithms involves activities like dry runs and
simulations to ensure they work as intended.

7.5 Dry Run
A dry run involves manually going through the algorithm with sample data to
identify any errors.
7.5.1 Dry Run of a Flowchart

A dry run of a flowchart involves manually walking
through the flowchart step-by-step to understand how
the algorithm works without using a computer. This helps
identify any logical errors and understand the flow of
control.

Example: Calculating the Sum of Two
Numbers
Consider the flowchart given in figure 7.7 for adding two
numbers:

Steps to dry run this flowchart:

1. Start

2. Input the first number (e.g., 3)

3. Input the second number (e.g., 5)

4. Add the two numbers (3 + 5 = 8)

Some algorithms can perform the same task much faster than
others. For example, sorting a list of 100 items might take one
algorithm 1 second and another algorithm 10 seconds!

Class activity

Think of a simple task, like finding the largest number in a list. Write
down the steps you would take to complete this task. Now, imagine the
list has 10 numbers, then 100 numbers. How do the steps change?

Dry Run a Flowchart
Draw a flowchart for finding the largest of two numbers. Perform a dry run
for the numbers 7 and 4. Write down each step and the values of variables.

Class activity

Figure 7.7: Flowchart
for adding two numbers

Start

Input first no. A

Display Sum

Stop

Input 2nd no. B

Sum = A + BNot
for

 Sale

PCTB

141

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Algorithm 4 FindMax

1. Input: num1, num2

2. if num1 > num2 then

3. max = num1

4. else

5. max = num2

6. end if

7. Output: max

Steps to dry run this pseudocode:
1. Input num1 and num2 (e.g., 10 and 15)
2. Check if num1 > num2 (10>15: False)
3. Since the condition is False, max = num2 (max = 15)
4. Output max (15)

5. Output the result (8)
6. Stop
7.5.2 Dry Run of Pseudocode
A dry run of pseudocode involves manually simulating the execution of the
pseudocode line-by-line.
This helps in verifying the logic and correctness of the algorithm.
Example: Finding the Maximum of Two Numbers
Consider the pseudocode for finding the maximum of two numbers:

Did you know that different algorithms can solve the same
problem more efficiently? For instance, one algorithm might
quickly find the highest marks in a list, while another might take
much longer. Learning how to evaluate and choose the best
algorithm is a key skill in computer science!

Figure 7.8: Flowchart for finding
maximum of two numbers

Start

Input NI , N2

 NI > N2
No

Max=N2
Yes

Max=N1

output Max

End

Not
for

 Sale

PCTB

142

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.5.3 Simulation
Simulation is we use of computer programs to create a model of a real-world
process or system. This helps us understand how things work by testing different
ideas or algorithms without needing to try them out in real life.
Why Use Simulation?

1. We can use simulation to see how well an algorithm Testing Algorithms:

works with different types of data. For example, if we want to test a new way

to sort numbers, we can simulate it with different sets of numbers to see how

fast it is.

2. Simulation allows us to create many different Exploring Scenarios:

situations to see what happens. For example, in a science experiment about

plant growth, we can simulate different amounts of water or sunlight to find

out which conditions help plants grow best.
Benefits of Simulation
• Cost-Effective: It is often cheaper and faster to run simulations than to

conduct real experiments.
• Safe: We can test dangerous situations, like a fire in a building, without

putting anyone at risk.
• Repeatable: We can run the same simulation multiple times with different

settings to observe how things change.
Examples of Simulation

1. Meteorologists use simulations to predict the Weather Forecasting:

weather. They input data about temperature, humidity, and wind speed into a

computer model to see how the weather might change over the next few

days.

2. City planners can simulate traffic to see how changes to roads or Traffic Flow:

traffic lights might affect the flow of cars. This helps them design better roads

and reduce traffic jams.

• Dry running your code or algorithm helps catching errors
early in the development process, saving time and effort.

• Many professional programmers and computer scientists
use dry running as a debugging technique to ensure their
algorithms work correctly!

Not
for

 Sale

PCTB

143

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

7.6 Introduction to LARP (Logic of Algorithms for Resolution of

Problems)
LARP stands for Logic of Algorithms for resolution of Problems. It is a fun and
interactive way to learn how algorithms work by actually running them and
seeing the results. Think of it as a playground where you can experiment with
different algorithms and understand how they process data.

7.6.1 Why is LARP Important?
LARP helps you:

• Understand how algorithms work. For instance, refer to Figure 7.9, which

illustrates an algorithm designed to determine the applicability of tax on the

annual salary of a person.

• See the effect of different inputs on the output.

• Practice writing and improving your own algorithms.

7.6.2 Writing Algorithms
Writing algorithms using LARP involves a structured and simplified approach to
developing logical solutions for computational problems. LARP employs a clear
syntax that begins with a START command and ends with an END command,
ensuring that each step of the algorithm is easy to follow. Within this framework,
instructions are provided in a straightforward manner, such as using WRITE to
display messages, READ to input values, and conditional statements like
IF...THEN...ELSE to handle decision-making processes. By breaking down
complex problems into manageable steps, LARP allows learners to focus on the
logical flow of the algorithm without getting stuck on complex coding syntax.
This method not only aids in understanding the fundamental concepts of
algorithm design but also enhances problem-solving skills by encouraging clear
and logical thinking.
Here's an example of a simple algorithm to check if a number is even or odd:

For the latest versions and updates of LARP software, check
trusted educational and coding platforms, or search for
"LARP software download" on your favorite search engine.

Not
for

 Sale

PCTB

144

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Figure 7.9: LARP Software

START

WRITE "Enter a number"

READ number

IF number % 2 == 0 THEN

WRITE "The number is even"

ELSE

WRITE "The number is odd"

ENDIF

END

7.6.3 Drawing Flowcharts in LARP
Drawing flowcharts in LARP involves visually representing the algorithm's steps
using standard flowchart symbols such as rectangles for processes, diamonds for
decisions, and parallelograms for input/output operations. Once the flowchart is
created, it can be executed in LARP by translating the flowchart into LARP syntax,
which uses straightforward commands like START, WRITE, READ, IF...THEN...ELSE,
and END. This process allows students to visualize the logic of their algorithm

Not
for

 Sale

PCTB

145

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

and see its step-by-step execution. For example, Figure 7.9 shows a flowchart for
determining whether a student's grade is above 'A' or not. We can execute the
flowchart to verify its correctness. This hands-on approach reinforces
understanding of how a flowchart works.

7.7 Error Identification and Debugging
When we write algorithms or create flowcharts in LARP, we sometimes make
mistakes called errors or bugs. These mistakes can prevent our algorithms from
functioning correctly. Error handling and debugging are processes that help us
find and fix these errors.

Figure 7.10: Flowchart in LARP

7.7.1 Types of Errors
There are three main types of errors you might encounter:

• Syntax Errors: These occur when we write something incorrectly in our

algorithm or flowchart. For example, missing a step or using the wrong

symbol.

• Runtime Errors: These happen when the algorithm or flowchart is being

Not
for

 Sale

PCTB

146

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

executed. For example, trying to perform an impossible operation, such as

dividing by zero.

• Logical Errors: These are mistakes in the logic of the algorithm that cause it to

behave incorrectly. For example, using the wrong condition in a decision step.

7.7.2 Debugging Techniques
Debugging is the process of finding and fixing errors in an algorithm or
flowchart. Here are some common debugging techniques:

• Go through each step of your algorithm or flowchart to see Trace the Steps:

identity where it goes wrong.

• Write comments or notes in your algorithm to explain what Use Comments:

each part is supposed to do. This can help you spot mistakes.

• Ensure that all conditions in decision steps are correct.Check Conditions:

• Break down the algorithm into smaller parts and test Simplify the Problem:

each part separately.

7.7.3 Common Error Messages in LARP
Here are some common error messages you might see in LARP and what they
mean:

• You probably forgot to include an important step in your Missing Step -

algorithm.

• You are using a variable that hasn't been defined yet.Undefined Variable -

• You are trying to perform an operation that is not Invalid Operation -

allowed, like dividing by zero.

Syntax errors are the easiest to find because the LARP tool
usually points them out. However, logical errors are the
hardest to find because the algorithm still runs but does not
procedure correct answers.

Always read error messages carefully. They often tell you exactly where
the problem is.Not

for
 Sale

PCTB

147

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Summary
· Computational thinking is important skill that enables individuals to solve

complex problems using methods that mirror the processes involved in
computer science.

· Decomposition is the process of breaking down a complex problem into
smaller, more manageable parts.

· Pattern recognition involves looking for similarities or patterns among
and within problems.

· Abstraction involves simplifying complex problems by breaking them
down into smaller, more manageable part, and focusing only on the
essential details while ignoring the unnecessary ones.

· An algorithm is a step-by-step set of instructions to solve a problem or
complete a task.

· Understanding the problem is the first and most important step in
problem-solving, especially in computational thinking.

· Simplifying a problem involves breaking it down into smaller, more
manageable sub-problems.

· Choosing the best solution involves evaluating different approaches and
selecting the most efficient one.

· Flowcharts are visual representations of the steps in a process or system,
depicted using different symbols connected by arrows.

· Pseudocode is a way of representing an algorithm using simple and

informal language that is easy to understand. It combines the structure of

programming languages with the readability of plain English, making it a

useful tool for planning and explaining algorithms.
· Time Complexity is a way to measure how fast or slow an algorithm

performs. It tells us how the running time of an algorithm changes as the

The term "debugging" comes from an actual bug—a
moth—that was found causing problems in an early
computer. The moth was removed, and the process was
called "debugging"

Class activity

Create a simple flowchart in LARP that calculates the average of three
numbers. Introduce a syntax error, a runtime error, and a logical error in
your flowchart. Then, try to fix them using the debugging techniques we
discussed.

Not
for

 Sale

PCTB

148

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

size of the input increases.

· Space complexity measures the amount of memory an algorithm uses in

relation to the input size. It is important to consider both the memory

needed for the input and any additional memory used by the algorithm.
· A dry run involves manually going through the algorithm with sample

data to identify any errors.
· Simulation is when we use computer programs to create a model of a real-

world process or system.
· LARP stands for logic of Algorithm for Resolution of Problems. It is a fun

and interactive way to learn how algorithms work by actually running
them and seeing the results.

· Debugging is the process of finding and fixing errors in an algorithm or
flowchart.

Multiple Choice Questions

1. Which of the following best defines computational thinking?

(a) A method of solving problems using mathematical calculations only.

(b) A problem-solving approach that employs systematic, algorithmic,

and logical thinking.

(c) A technique used exclusively in computer programming.

(d) An approach that ignores real-world applications.

2. Why is problem decomposition important in computational thinking?

(a) It simplifies problems by breaking them down into smaller, more

manageabl parts.

(b) It complicates problems by adding more details.

(c) It eliminates the need for solving the problem.

(d) It is only useful for simple problems.

3. Pattern recognition involves:

(a) Finding and using similarities within problems

(b) Ignoring repetitive elements

(c) Breaking problems into smaller pieces

(d) Writing detailed algorithms
4. Which term refers to the process of ignoring the details to focus on the main

idea?
(a) Decomposition (b) Pattern recognition
(c) Abstraction (d) Algorithm design

Not
for

 Sale

PCTB

149

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

5. Which of the following is a principle of computational thinking?
(a) Ignoring problem understanding (b) Problem simplification
(c) Avoiding solution design (d)Implementing random solutions

6. Algorithms are:
(a) Lists of data
(b) Graphical representations
(c) Step-by-step instructions for solving a problem
(d) Repetitive patterns

7. Which of the following is the first step in problem-solving according to
computational thinking?

(a) Writing the solution (b) Understanding the problem
(c) Designing a flowchart (d) Selecting a solution

8. Flowcharts are used to:
(a) Code a program
(b) Represent algorithms graphically
(c) Solve mathematical equations
(d) Identify patterns

9. Pseudocode is:
(a) A type of flowchart
(b) A high-level description of an algorithm using plain language
(c) A programming language
(d) A debugging tool

10. Dry running a flowchart involves:
(a) Writing the code in a programming language
(b) Testing the flowchart with sample data
(c) Converting the flowchart into pseudocode
(d) Ignoring the flowchart details

Short Questions
1. Define computational thinking.
2. What is decomposition in computational thinking?
3. Explain pattern recognition with an example.
4. Describe abstraction and its importance in problem-solving.
5. What is an algorithm?
6. How does problem understanding help in computational thinking?
7. What are flowcharts and how are they used?
8. Explain the purpose of pseudocode.
9. How do you differentiate between flowcharts and pseudocode?
10. What is a dry run and why is it important?
11. Describe LARP and its significance in learning algorithms.
12. List and explain two debugging techniques.

Not
for

 Sale

PCTB

150

Class activity

The octal system was more common in early computing
systems like the PDP-8. It was used because it is easier to
convert between octal and binary than between decimal
and binary.

Long Questions
1. Write an algorithm to assign a grade based on the marks obtained by a

student. The grading system follows these criteria:
• 90 and above: A+
• 80 to 89: A
• 70 to 79: B
• 60 to 69: C
• Below 60: F

2. Explain how you would use algorithm design methods, such as flowcharts
and pseudocode, to solve a complex computational problem. Illustrate your
explanation with a detailed example.

3. Define computational thinking and explain its significance in modern
problem-solving. Provide examples to illustrate how computational thinking
can be applied in different fields.

4. Discuss the concept of decomposition in computational thinking. Why is it
important?

5. Explain pattern recognition in the context of computational thinking. How
does identifying patterns help in problem-solving?

6. What is an abstraction in computational thinking? Discuss its importance and
provide examples of how abstraction can be used to simplify complex
problems.

7. Describe what an algorithm is and explain its role in computational thinking.
Provide a detailed example of an algorithm for solving a specific problem,
and draw the corresponding flowchart.

8. Compare and contrast flowcharts and pseudocode as methods for algorithm
design. Discuss the advantages and disadvantages of each method, and
provide examples where one might be preferred over the other.

9. Explain the concept of a dry run in the context of both flowcharts and
pseudocode. How does performing a dry run help in validating the
correctness of an algorithm?

10. What is LARP? Discuss its importance in learning and practicing algorithms.
11. How does LARP enhance the understanding and application of

computational thinking principles? Provide a scenario where LARP can be
used to improve an algorithm.

Not
for

 Sale

PCTB

	chapter-7
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

