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Digital Systems and 
Logic Design

UNIT

3
Student Learning Outcomes
By the end of this chapter, you will be able to:

• Understand Boolean functions and operations it, such as Boolean AND, 

and OR. 

• Construct Boolean expressions using variables and Boolean operators.

• Relate common Boolean identities and Boolean simplification 

procedures. 

• Understand the concept of duality in Boolean algebra. 

•  Subtopics such analog and digital signals

• Introduce several types of gates and their functions. 

• Build truth tables for the operations of logical expressions. 

• Employ the K-Maps in minimizing Boolean expressions. 

• Introduce logic diagrams of digital system. 

• Analyze and design half-adder and full-adder circuits.
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Introduction
In this chapter, we will discuss the Boolean functions, logic, digital logic, and 

difference between analog and digital signals. We will also discuss several types 

of gates, their truth tables, and digital devices including half and full adders. At 

the completion of this chapter, you should be construct Boolean expressions,  

simplify them, create truth table, and understand the basics of digital logic.
3.1  Basics of Digital Systems
Digital systems are the backbone of today's electronics and computing. They 

manipulate digital information in the form of binary digits, which are either 0 or 1 

and are used in calculation devices such as calculators and computers, among 

others.

3.1.1 What is an Analog Signal 
Analog signals are signals that changes with time smoothly and continuously 

over time. They can have any value within given range. Examples include voice 

signal (speaking), body's temperature and radio-wave signals. Digital signals are 

the signals which have only two values that are in the form of '0' and '1'. These are 

utilized in digital electronics and computing systems. Analog to digital converter 

(ADC) and digital to analog converters (DAC) are important operations in today's 

technological developments, enabling the transmission and control of signals.

Analog to Digital Conversion (ADC): ADC is the conversion of analog signals 

into digital signals, which are discrete and can be easily processed by 

computerized devices like computers and smart phones. 

Digital to Analog Conversion (DAC): DAC is the conversion whereby analog 

signals are converted to digital signals, making it possible for human to perceive 

the information, for instance through speakers, as depicted in figure 3. 1.

Analog Signal Digital Signal 

Continuous 

Infinite possible values 

Example: Sound waves 

Discrete  

Finite (0 or 1) 

 Example: Binary data in 

computers 
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 Figure 3.1: Analog to Digital and Vice Versa

ADC and DAC Conversion: Why is it needed? 
Digital to analog conversion, and vice versa, is critical since it enables data 
processing, storage, and transmission. Digital signals are much less affected by 
noise and signal degradation and are therefore better suited for transmitting and 
storing information over long distances. 
Example: Sound Waves 
Let us consider a situation where one person is speaking into a microphone while 
the other person is receiving sound through speakers as illustrated in the figure 
3.1. 
1. Microphone (ADC): When you speak into the microphone, your voice 
produces sound waves (analog signals) that are captured by the system. This is 
done by converting the sound waves into digital form using an ADC with the 
microphone. Finally, this digital data can be transmitted over long distances with 
little or no degradation in quality. 
2. Speakers (DAC): At the receiver end, the digital signals are then converted 
back into analog signals with the help of DAC. The speakers then translate these 
analog signals back into sound waves to enable you hear to the other person's 
voice as if they were speaking directly to you.

ADC DAC

Analog signals are sometimes changed to digital signals in 

an action known as Analog to Digital Conversion or ADC. This 

enables analog information such as music, to be recorded 

and manipulated by digital gadgets.
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3.1.2 Fundamentals of Digital Logic
Digital logic is the basis of digital systems. It involves the use of binary numbers 
that is 0 and 1, to represent and manipulate information. Digital logic circuits use 
of these binary values to perform various operations, and they are essential to 
the functioning in operation of computers and many other electronic devices. 

In digital circuits, the two states, 0 and 1, are represented by different voltage 
levels. Conventionally, a higher voltage, such as, 5 volts refer to a binary ‘1’ , while 
a low voltage, for instance, 0 volts refer to a binary ‘0’. These voltage levels are 
termed as the logic levels. Logic levels are needed to switch on and switch off the 
devices and to define ways through which digital circuits execute operations and 
process information.
3.2  Boolean Algebra and Logic Gates
Boolean algebra is a branch of mathematics relate to logic and symbolic 
computation, using two values namely True and False. It is an essential branch of 
digital circuits since it is the basis for the analysis and design of circuits. Here in 
this section we will cover of Boolean functions and expressions, the working, and 
functions of logic gates, Building and evaluating Truth Tables and Logic 
Diagrams.
3.2.1  Boolean Functions and Expressions
Binary values are used to describe the relationship between variables in the 
Boolean function and Boolean expressions. The expressions are built using AND, 
OR, and other logic operations and can in several ways be reduced to optimize 
digital circuits.

3.2.1.1 Binary Variables and Logic Operations
Binary variables that can have only have two values, 0 and 1. Logic operations are 
basic operations implemented in Boolean algebra for processing of these binary 
variables. The primary logic operations are AND, OR and NOT.
AND Operation:
AND is the basic logical operator which is used in Boolean algebra. It requires two 
binary inputs which will give a single binary output.  The symbol '.' is used for the 
AND operation. The output of the AND operation is “1” only when both inputs 
are “1”. Otherwise, the result is “0”.
Example:
Consider two binary variables:

 A = 1(True)
 B = 0 (False)

The AND operation for these variables can be written mathematically as: 
P = A · B

In this example:
A=1   B = 0

Therefore, then, the result P of the AND operation is 0 (false).
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Truth Table: 
A truth table is useful in demonstrating the functionality of the AND operation  

with all possibilities of the input variables. Below is the truth table for the AND 

operation.

Table 3.1: Truth Table for AND Operation

Explanation: 
If both A and B are off, that is equal to zero then the desired output P is off 

(0). 
   if A is 0 and B is 1 the output P is 0. 
When A is 1 and B is 0 P is resulting 0. 
When A is 1 and B is 1, the output P also becomes 1.

OR Operation: 
The OR operation is an other basic logical operator in Boolean algebra. To be 

specific this is also a function tables two binary variables as input produces a  

single binary output. According to Table 3.2, the OR operation yields true (1) 

output when at least of ‘1’ of the inputs is true (1). The output is 0 only when both 

inputs are ‘0’.
Example: 
 Consider two binary variables: 

  A = 1 (true) 
  B = 0 (false) 

The OR operation for these variables can be written mathematically as: 
P = A+B 

In this example: 
 A = 1   B= 0 

Therefore, result P of the OR gate will be 1.
Truth Table: 
A truth table is useful for better understanding of how the OR operation is 

organized and what the result of the OR's application is for all variants of the 

input variables. Below is the truth table for the OR operation.

A B A AND B (P) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Not 
for

 Sale
 

PCTB



Class activity

The octal system was more common in early computing 
systems like the PDP-8. It was used because it is easier to 
convert between octal  and binary than between decimal 
and binary.

54

Explanation:

If A is equal to 0 and B is equal to 0 the output P is equal to 0. When A is zero and B 
is one, the output P is also one.  When A is equal to 1 and B is equals to 0 the 
values of P equal to 1.  When both A and B are 1 then the output P equal to one. 

Table 3.2: Truth Table for OR Operation

A B A OR B (P) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

In binary logic, 1 + 1 does not equal 2 but equals 1 in logical 

operation. This is because the OR operation returns a value of 

1 if any or both of the inputs to this operator are 1. 

NOT Operation: 
The NOT operation is one of the basic Boolean algebra operations which takes a 

single binary variable and simply negates its value. If the input is one, the output 

is zero and if the input is zero, the output is one. 
Example: 
 Consider a binary variable: 

  A = 1 (true)   
The NOT operation for this variable can be written mathematically as: 

 P =  A     or     P=    A 
 In this example: 

  P = 0 
 This signifies that if you have A = 1 (true), the result of NOT operation is going to 

be 0 (false). 
Truth Table: 
The following table will illustrate the working of NOT operation for all possible 

inputs of the variable. Below is the truth table for the NOT operation.

Table 3.3: Truth Table for NOT Operation

A NOT A (P) 
0 1 
1 0 
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Explanation:
When the input A is 0, the output P is 1. When A is 1 the output value P is 0. A NOT 
operation performs the negative of the input variable i. e., it gives the opposite 
value. This operation is important in digital logic design to generate more 
complex logic functions and verify the functionality of digital circuits.
3.2.1.2  Construction of Boolean Functions
Boolean functions are algebraic statements that describe the relationship 
between binary variables and logical operations. These functions are particularly 
important for digital logic design and are employed in formation of various 
digital circuits, which are the basis of current computers, mobile phones and 
even simple calculator.
Understanding Boolean Functions:
A Boolean function is a function which has a one or more binary inputs and 
produces a single binary output. The inputs and outputs can only have two 
values: False (represented by 0) and True (represented by 1). The construction of 
Boolean functions is done by employing the basic logical operations such as 
AND, OR and NOT, which connect the inputs to generate the correct output. 

Example 1: Simple Boolean Function
Consider a Boolean function with two inputs, A and B. We can construct a 
function F that represents the AND operation:

F ( A, B ) = A . B
 

 
                                

Output 

 

Figure 3.2: Simple Boolean Function

Input

The diagram shown above demonstrates a basic digital circuit, which is an AND 

gate. The box symbolizes the AND function F (A, B) = A . B. This box has two inputs 

A and B. If both A and B are 1, the output will be 1. In any other case, the output 

will be 0. The input are shown at the entrance to the box, while the output is 

depicted at the exit of the block. The truth table for this function is as follows:
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Table 3.4: Truth Table for F(A,B) = A.B

A B F(A, B) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Example 2: Now, let us construct a more complex Boolean function with three 
inputs, A, B, and C: 

F (A, B, C) = A . B + A . C 
This function uses AND, OR and NOT at the same time. The truth table for this 
function is as follows: 
Explanation: 
• The parameters A, B, and C are included in the following example as the input 

columns. 
• The results of AND operation between two variable A and B are presented in 

the column A · B. 
• The column A standing for the NOT operation of A. 
• Every value in the column A · C displays the result of AND operation between 

the values in the Fifth column and the third column. 
• The final column F (A, B, C) shows the output of the Boolean function                  

(A . B) + (A . C)

Table 3.5: Detailed Truth Table for F (A, B, C) = (A . B) + (A . C)

A
 

B
 

C
 

A·B
 

A
 

A·
 
C

 
F(A, B, C)

 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0 0 1 0 1 1  1  

0 1 0 0 1 0  0  

0 1 1 0 1 1  1  

1 0 0 0 0 0  0  

1 0 1 0 0 0  0  
1

 
1
 

0
 

1
 

0
 

0
 

1
 

1
 

1
 

1
 

1
 

0
 

0
 

1
 

Usage in Computers:
There are many uses of Boolean functions in the computers for various 
operations. Here are some examples of their usage: 

• Arithmetic Operations: Boolean functions are used in Arithmetical Logic 

Units (ALUs) of CPUs to perform operations like addition, subtraction, 

multiplication, and even division.
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• Data Processing: Boolean functions are used to process binary data in 

memory and storage devices, ensuring efficient data manipulation and 

retrieval.

• Control Logic: Boolean functions are applied in computers to control various 

parts of the system's operation to function in co-ordinated manner.

 

Boolean functions are also present in our everyday devices 
like cell phones and calculators: 

Cell Phones: In cell phone processing, when you dail a 
number, or press a button on a phone, a Boolean function 
evaluates these inputs as true or false and makes the 

necessary output. 

Calculators: Basic calculators use Boolean functions. When you feed it 
with numbers and the operations to be performed, Boolean logic is 
used to arrive at the right result.

Class activity

Consider what do you do with your cell phone or calculator on daily basis. 
Can you distinguish activities that require logical choices, like entering a 
password to unlock your smart phone or solving a math problem? Ask your 
group members how Boolean functions may be utilized in the background.

3.2.2 Logic Gates and their Functions
Logic gates are physical devices in electronic circuits that perform Boolean 

operations. Each type of logic gate corresponds to a basic Boolean operation. 

Examples of the logic gates are:

AND Gate: Implements the AND function. It outputs true only when both inputs 

are True (1)

George Boole, a mathematician who invented Boolean algebra 
was born in Lincoln, England in the year 1815. His work laid the 
debate and the basis for future digital revolution and computer 
science as well as subsequent technologies of the future.
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Imagine a simple electronic circuit with an AND gate. If you press two switches 

(both must be ON), a light bulb will turn on.

• Switch 1: ON (True)

• Switch 2: ON (True)

• Light bulb: ON (True) because both switches are ON.

If either switch is OFF, the light bulb will be OFF.

OR Gate: Implements the OR function. It outputs true when at least one input 

is true.

Figure 3.3: AND Gate      

   Figure 3.4: OR Gate

NOT Gate: Implements the NOT function. It outputs the opposite of the input. 

See Figure 3.4

Figure 3.5: NOT Gate

NAND Gate: This gate is achieved when an AND gate is combined with a NOT 

gate. It generates true when at least one of the inputs is false. In other words, 

it is the inverse of the AND gate, as presented in Figure 3.6.

  Figure 3.6: NAND Gate
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Example:

Imagine a safety system where an alarm should go on if either one of two sensors 

detects an issue.

• Sensor 1: No issue (False)

• Sensor 2: Issue detected (True)
• Alarm: ON (True) because one sensor detects an issue.

XOR Gate:
The XOR (Exclusive OR) gate outputs true only when exactly one of the inputs is 
true. It differs from the OR gate in that it does not output true when both inputs 
are true. It is shown in Figure 3.7.

                                           

 Figure 3.7: XOR Gate

Example:
Imagine a scenario where you can either play video games or do homework, but 
not both at the same time.

• Play video games: Yes (True)
• Do homework: No (False)
• Allowed? Yes (True) because only one activity is being done.

Class activities

Let's make learning these logical functions fun with an activity!
1. AND Adventure: Form pairs and give each pair two conditions they 

need to meet to win a prize (like both wearing a specific color shirt). 
2. OR Options: Make a list of fun activities. If at least one activity is 

possible, the class gets extra playtime. 
3. NOT Negatives: Ask true/false questions and have students shout 

the opposite answer. For example, "Is the sky green?" Students 
should shout "No!" (NOT True).

4. Construct a basic circuit using a breadboard, a battery, and LED 
lights to represent an AND gate. Connect two switches which will 
serve as, inputs A and B. In this experiment the LED will light up only 
when both switches are pressed.
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Class Activity
Let's make learning these logical functions fun with an activity!
1. **AND Adventure**: Form pairs and give each pair two conditions they 
need to meet to win a prize (like both wearing a specic color shirt). 
2. **OR Options**: Make a list of fun activities. If at least one activity is 
possible, the class gets extra playtime. 
3. **NOT Negatives**: Ask true/false questions and have students shout 
the opposite answer. For example, "Is the sky green?" Students should shout 
"No!" (NOT True).

Class Activity
Build a simple circuit using a breadboard, a battery, and LED lights to 
demonstrate the function of an AND gate. Connect two switches (representing 
inputs A and B) and observe how the LED lights up only when both switches are 
pressed.

Amazing Fact
The rst digital computer, ENIAC, was built in the 1940s and weighed over 27 
tons. Modern smartphones are millions of times more powerful and t in your 
pocket!

3.3 Simplification of Boolean Functions
Simplification of Boolean functions is a particularly important process in 
designing an efficient digital circuit. Such simplified functions require fewer 
gates making them compact in size, energy efficient and faster than the 
complicated ones. Simplification means applying of some Boolean algebra rules 
to make the functions less complicated. 
Basic Boolean Algebra Rules: 
Here are some fundamental Boolean algebra rules used for simplification:
1.  Identity Laws

A + 0 = A
A . 1 = A

2.  Null Laws
A + 1 = 1
A . 0 = 0

3.  Idempotent Laws
A + A = A
A . A = A

4.  Complement Laws
A + A = 1
A . A = 0

5.  Commutative Laws
A + B = B+A
A . B = B . A

6.  Associative Laws
(A + B)+ C = A + (B + C)

(A . B) . C = A . (B . C)
7.  Distributive Laws

A . (B + C) = (A . B) + (A . C)
A + (B . C) = ( A + B) . (A + C)

8.  Absorption Laws
A + (A . B) = A
A . (A + B) = A

9.  De Morgan's Theorems
A + B = A . B
A . B = A + B

10. Double Negation Law
A = A
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Simplification Examples  

Example 1

 

Simplify the expression A

 
+ A

 
• B.

 

Solution:
 

A
 

+ A
 

• B
 

= (A
 

+ A) • (A
 

+ B)
 

= 1 • (A
 

+ B)
 

= A + B 

  Example 2 

  Simplify the expression A • B + A • B. 
Solution: 

A•B+A
 

• B = A
 

+ B
 

+ A
 

• B
 

= 
 
 ( A

 
+ B )

 
= 

  

 

     

Example 3

 Simplify the expression (A

 

+ B) • (A

 

+ B)

 

Solution:

 

   

(A

 

+ B) • (A

 

+ B)

   

= 

A
 

+ A
 

• B
 
+ B

 
• B

 
= 

    
= A

 

+ A

 

• B

 
= A

 

• (1 + B)

 

= A

 

• 1

 

=A

 

   

Example 4

 

  

Simplify the expression A

 

+ B

 

• (A

 

+ B)

 

Solution:

 

A

 

+ B

 

• (A

 

+ B) = (A

 

• B) • (A

 

+ B)

 

= A

 

• B

 

• A

 

+ A

 

• B

 

• B

 

= A

 

• B  + A . B

  

= A

 

• B

 
 

 

 

 

(Distributive Law) 
 

(Complement Law) 
 

(Identity Law)  

 

 

 

(De Morgan’s Theorem) 

Since A is already present in 

(A . B), we can use absorption law

 i.e A+ (A . B)= A

 

              

 

 

 

 

 

(Distributive Law)

 

        

(Absorption Law)

 
(Identity Law)

 

    

(Distributive Law)

 

                  

(Null Law)

 

(Identity Law)

 

 

                

(De Morgan’s Theorem) 

 
 

                

(Distributive Law) 

 
 

                

(Idempotent Law)

 

                

(Identity Law)

  

A + B

A (A+B)+B  (A+B)• • 
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3.4. Creating Logic Diagrams
The logic diagrams depict the working of a digital circuit through symbols that 

represent to its individual logic gates. To create a logic diagram:
•  Find out the logic gates needed for the Boolean function. 
• Arrange the gates to perform the operations as defined by the function of the
• circuit. 
• Connect the inputs and the output of the gates correctly. 
To summarize, knowledge of Boolean algebra and logic gates is crucial when it 

comes to the creation and study of digital circuits. If students understand those 

concepts, they can build efficient and effective digital systems.

3.5. Application of Digital Logic
Digital logic is an essential aspect for the functioning of several modern 

electronic systems, such as computers, smart phones, and other digital gadgets. 

Digital logic optimize in many ways in order to create and enhance circuits meant 

to perform various tasks. Two important applications of digital logic are the 

design of adder circuits and the use of Karnaugh maps for function simplification.

3.5.1 Half-adder and Full-adder Circuits
Adder circuits are widely used in the digital circuits to perform arithmetic 

calculations. There are two general forms of adder circuits known as half-adders 

and full adders. 

3.5.1.1 Half-adder Circuits
A half adder is a basic circuitry unit that performs addition of two single-bit 

binary digits. It has two inputs, usually denoted as A and B, and two outputs: the 

sum (S) and the carry (C).
Truth Table for Half-adder:

Boolean Expressions for Half-adder:
S = A ⊕ B
C = A . B

In this case the symbol + represents the XOR operation. The sum output is high 

when only one of the inputs is high, while the carry output is high when both 

inputs are high.

Table 3.6: Truth Table for Half-adder

A B Sum (S) Carry (C) 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 
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Boolean Expressions:
 Sum = A ⊕ B

3.5.1.2 Full-adder Circuits
A full-adder is a more complex circuit that adds three single-bit binary numbers: 
two bits that belong to the sum and a carry bit from a previous addition. It has 
three inputs, denoted as A, B, and C  (carry input), and two outputs: called the in

sum (S) and the carry (Cout) with both being integer values.

Table 3.8: Half-Adder Circuit

Table 3.7: Truth Table for Full-adder

A

 
B

 
Cin

 
Sum (S)

 
Carry

 
(Cout)

 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

1
 

0
 

0 1 0 1 0  

0 1 1 0 1  

1 0 0 1 0  
1

 
0

 
1
 

0
 

1
 

1
 

1
 

0
 

0
 

1
 

1

 
1

 
1

 
1

 
1

 

Table 3.9: Half-Adder Circuit

Sum = A⊕B⊕Cin
Carry= (A.B) + (Cin . (A⊕B)) 

Boolean Expressions:
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The sum output is high if the number of high inputs is odd whereas the carry 

output is high if the number of high inputs is at least 2.

3.5.2 Karnaugh Map( K-Map)
A Karnaugh map (K-map) is a graphical representation which can be used to 
solve Boolean algebra expressions and minimize a logic function where algebraic 
computations are not employed. It is a technique in which the truth value of 
Boolean function is plotted to enable the identification of patterns and to 
perform term combining for simplification.

3.5.2.1  Structure of Karnaugh Maps
A K-map is a matrix where each square is a cell, which corresponds to a 
positioned combination. These cells are filled with '1' or '0' in reference to the 
truth table of the Boolean function. The size of the K-map depends on the 
number of variables: 

• 2 Variables: 2x2 grid

• 3 Variables: 2x4 grid

• 4 Variables: 4x4 grid least

• 5 Variables: 4x8 grid (less common for manual simplification)
Every cell in the K-map represents a minterm, and the cells in each row of the K-
map differ by only one bit at any particular position, following the gray code 
sequence.

3.5.2.2 Minterms in Boolean Algebra
In Boolean algebra, a minterm is a particular product term whereby every 
variable of the function is present in either 1 its true form or its complement. Each 
minterm corresponds to one and only one set of variable values that makes the 
Boolean function equal to true or 1.

Table 3.8: Possible Minterms for A,B and C

Minterm
 

Variables Combination
 
Minterm Expression

 

m0 A= 0, B= 0,C= 0 ABC  

m1 A= 0, B= 0,C= 1 AB   C  

m2 A= 0, B= 1,C= 0 A  B  C  

m3 A= 0, B= 1,C= 1  A  B  C  

m4 A= 1, B= 0,C= 0 A  B  C  

m5 A= 1, B= 0,C= 1 A  B  C  

m6 A= 1, B= 1,C= 0 A  B  C  

m7
 

A= 1,
 
B= 1,C= 1

 
A

 
B

 
C
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Minterm Notation For a Boolean function with variables A, B and C:
The minterm where A = 1, B = 0 and C = 1 is written as A B C.
Consider a Boolean function F(A,B,C). The possible minterms for this function are: 
Possible Minterms for A,B,C

3.5.2.3 Creating Karnaugh Maps
 To create a K-map, follow these steps: 
1. Create a grid based on the number of variables that exists in the system. 
2. Let us complete the grid using the output values in the truth table. 
3. Arrange the 1s in the grid in the largest possible groups of size 1, 2, 4, 8 and so 

on. Every group must have one or more 1s, must be a power of two, and they 
must be in a continuous rows or columns.

Example: Simplifying a Boolean Expression with a K-map
To simplify the Boolean expression A . B + A . B + A . B using a Karnaugh map (K-
map):

1. Expression: A . B + A . B + A . B

Step 1:   Draw the K-map Grid
  For two variables A and B:

 B = 0  B = 1 

A = 0 0 1 
A = 1 1 1 

Step 2: Fill in the K-map
Determine the output for each combination of A and B based on the 
expression:
• For A= 0 and B = 0:  F = A . B+ A . B + A . B =  1 . 0 + 0 . 0 + 0 . 0 = 0

• For A= 0 and B = 1:  F = A . B+ A . B + A . B =  0 . 0 + 1 . 1 + 0 . 1 = 1

• For A= 1 and B = 0:  F = A . B+ A . B + A . B =  1 . 1 + 0 . 0 + 1 . 0 = 1

• For A= 1 and B = 1:  F = A . B+ A . B + A . B =  1 . 0 + 0 . 1 + 1 . 1 = 1

        
Step 3: Group the 1s in the K-map
Group adjacent 1s to simplify the expression

 B = 0  B = 1 

A = 0 0 1 
A = 1 1 1 
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From the K-map, we can form the groups:

1. Group of two 1s in the second column : A . B+ A . B
A . B+A . B = (A + A) . B = 1 . B = B

2. Group of two 1s in the second row: A . B + A . B
A . B+A . B = (B + B) . A = 1 . A = A

Final Simplified Expression
F (A, B) = B + A

Practical Usage:
Karnaugh maps are extensively used in digital circuit design to minimize the 
number of gates needed for a given function. This leads to circuits that are faster, 
cheaper, and consume less power.

Class Activity 
Activity:  Construct a digital circuit that includes both half-adders and 
full-adders to add two 4-bit binary numbers. Create the truth tables, 
Boolean expressions, and circuit diagrams for each step.

Summary 
• Digital systems are the basis of the present-day electronics and 

computing. They process digital data in form of '0' and '1'. 
•  Analog signals are continuous time varying signal. 
• ADC (Analog to Digital Converter) is the process of converting the 

continuous signals into discrete signals that can be processed by digital 
devices for example computers and smart phones. 

• DAC (Digital to Analog Converter) converts the digital signal back to the 
analog signal. 

• Digital logic is the basis of all digital systems. This is the technique we use 
to process digital information in the form of binary numbers. 

• Boolean algebra is a sub-discipline of mathematics based on operations 
involving binary variables. 

• In the case of AND operation the output is 1 only when both input values 
are 1. Otherwise, the output is 0. 

• In an OR gate, the result is 0 only when both the input values are 0. 
Otherwise, the output is 1. 

• The NOT operation the simplest logical operation in Boolean algebra, 
which accept a single binary inputs and gives its opposite as the outputs.

• Boolean functions are mathematical expressions that represent logical 
operations involving binary variables. 

• A crucial element of digital circuit design is the logic diagram, which 
represents the structure of the circuit by showing connections between 
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logic gates. 
• Adder circuits are widely used in the digital electronic systems with the 

principal application in arithmetic operations. 
• A half-adder is a digital circuit  used to compute the addition of two  

single-bit binary numbers. 
• A full-adder is a more complex circuit that adds three single-bit numbers: 

two main bits and a carry bit from a previous addition. 
• A Karnaugh map (K-map) is a graphic aid that is employed in simplification 

of Boolean expressions and minimizing logic functions without the used 
for  complex algebraic operations. 

• A minterm in Boolean algebra is a specific product (AND) form of a Boolean 
expression that includes all of the function's variables, either in their 
normal or complemented form.

Multiple- Choice Questions (MCQs)

1.  Which of the following Boolean expressions represents the OR operation?

(a) A · B  (b) A + B  (c) A (d) A⊕B

2.  What is the dual of the Boolean expression A . 0 = 0?

(a) A + 1 = 1 (b)  A + 0 = A               (c)  A . 1 = A (d)      A . 0 = 0

3.  Which logic gate outputs true only if both inputs are true?

(a) OR gate (b) AND gate (c)   XOR gate      (d) NOT gate

4.  In a half-adder circuit, the carry is generated by which operation?
(a) XOR operation  (b) AND operation
(c) OR operation     (d) NOT operation

5. What is the decimal equivalent of the binary number 1101?
(a) 11 (b) 12  (c) 13  (d) 14

Short Questions
1. Define a Boolean function and give an example.
2. What is the significance of the truth table in digital logic?
3. Explain the difference between analog and digital signals.
4. Describe the function of a NOT gate with its truth table.
5. What is the purpose of a Karnaugh map in simplifying Boolean expressions?
Long Questions
1. Explain the usage of Boolean functions in computers.
2. Describe how to construct a truth table for a Boolean expression with an 

example.
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3. Describe the concept of duality in Boolean algebra and provide an example 
to illustrate it.

4. Compare and contrast half-adders and full-adders, including their truth 
tables, Boolean expressions, and circuit diagrams.

5. How do Karnaugh maps simplify Boolean expressions? Provide a detailed 
example with steps.

6. Design a 4-bit binary adder using both half-adders and full-adders. Explain 
each step with truth tables, Boolean expressions, and circuit diagrams.

7. Simplify the following Boolean function using Boolean algebra rules:
F (A, B) = A . B+A . B

8. Use De Morgan's laws to simplify the following function:
F (A, B, C) = A + B + AC

9. Simplify the following expressions

(a) A + B  . (A + B) 

(b) (A + B) . (A + B)

(c) A + A . (B + C ) 

(d) A . B+A . B

(e) (A . B) + (A . B )
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