

Introduction

We will study the Theorem related with Area.

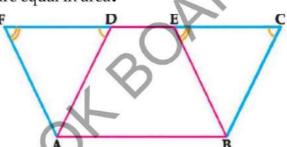
Theorems Related with Area

Theorem 14.1.1

Parallelograms on the same base and lying between the same parallel lines (or of the same altitude) are equal in area.

Given:

Two parallelograms ABCD and ABEF with the same base \overline{AB} and between the parallels segments \overline{AB} and \overline{DE} .



To prove:

Parallelograms ABCD and ABEF are equal in areas, i.e. ■ABCD = ■ABEF.

Proof:

11001.		
Statements	Reasons	
In ΔADF ↔ ΔBCE		
$m\overline{\mathrm{BC}} = m\overline{\mathrm{AD}}$ (i)	Opposite sides of \parallel^m ABCD are equal.	
$m \angle BCE = m \angle ADF$ (ii)	Corresponding angles of \parallel^m ABCD.	
$\angle E \cong \angle F$ (iii)	Corresponding angles of \parallel^m ABEF.	
$\Delta BCE \cong \Delta ADE$	$S.A.A \cong S.A.A$	
▲BCE ≅ ▲ADF ■ABED + ▲BCE = ■ABED + ▲ADF Thus, ■ABCD = ■ABEF.	Congruent figures are equal in area. Adding same area on both sides ■ ABCD = ■ ABED + ▲ BCE ■ ABEF = ■ ABED + ▲ ADF	

Q.E.D

Corollary

(i) The area of parallelogram is equal to that of a rectangle on the same base and having the same altitude.

Theorem 14.1.2

Parallelograms on equal bases and having the same altitude are equal in area.

Given:

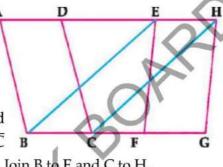
Parallelograms ABCD and EFGH are on the equal bases \overline{BC} and \overline{FG} , having equal altitudes.

■ ABCD = ■ EFGH. To Prove:

Construction:

Place the parallelograms ABCD and EFGH so that their equal bases BC B

and FG are on the same straight line. Join B to E and C to H.



Reasons

Their altitudes are equal (given) "ABCD and I " EFGH are between the

same parallel segments AH and BG.

Hence, A, D, E and H are points lying on a straight line parallel to BC.

Statements

 $m\overline{BC} = m\overline{FG}$

 $m\overline{BC} = mEH$

mBC = mEH also these are parallel

Hence, EBCH is a parallelogram

Now ■ABCD = ■EBCH ... (i)

But **■**EBCH = **■**EFGH ... (ii)

Thus, ■ABCD = ■EFGH

Given

EFGH is a parallelogram

Segment of parallel lines are also parallel segments.

A quadrilateral with two parallel opposite sides is a parallelogram

Theorem 14.1.1

Theorem 14.1.1

From (i) and (ii)

Q.E.D

Theorem 14.1.3

Triangles on the same base and of the same altitude are equal in area.

Given:

 ΔABC and ΔDBC are on the same base BC and between the same parallel lines \overline{BC} and \overline{AD} .

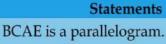
To prove:

 \triangle ABC = \triangle DBC

Construction:

Draw BE CA, meeting at AD produced, at E and also draw CF BD meeting at AD produced at F.

Proof:



$$\blacktriangle$$
ABC = $\frac{1}{2}$ (■BCAE) ... (i)

Similarly BCFD is a parallelogram

$$\triangle DBC = \frac{1}{2} (\blacksquare BCFD) \dots (ii)$$

Reasons

By construction

Diagonal AD divides parallelogram **B**CAE into two Δ s of equal areas.

By construction

Diagonal CD divides parallelogram BCFD into two triangles of equal

Theorem 14.1.1

Q.E.D

Theorem 14.1.4

Triangles on equal bases and of equal altitudes are equal in area.

Given:

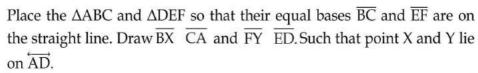
 \triangle ABC and \triangle DEF are on \checkmark equal bases BC and EF respectively and having equal altitudes.

To prove:

▲ABC = ▲DEF

Construction:

Draw AD, BF containing points B, C, E, F.



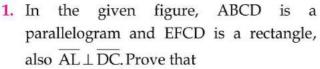
Proof:

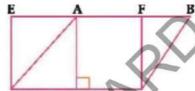
Statements	Reasons	
ΔABC and ΔDEF are between the	Altitudes are equal (given)	
same parallel lines.		
$\overleftrightarrow{\mathrm{BF}} \overleftrightarrow{\mathrm{XY}}$	00'	
∴ BCAX = EFYD (i)	Theorem 14.1.2	
1	-0/-	
But, $\triangle ABC = \frac{1}{2} (\blacksquare BCAX)$ (ii)	Diagonal of a parallelogram divides	
	into two equal triangles	
and $\triangle DEF = \frac{1}{2} (\blacksquare EFYD)$ (iii)	By same reason	
∴ ▲ABC = ▲DEF.	From eqs.(i), (ii) and (iii)	
0.00		

Q.E.D

Corollaries: Triangles having a common vertex and equal bases in the same straight line are equal in area.

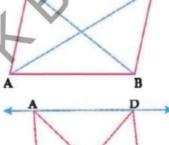
Exercise 14.1



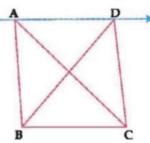


(ii)
$$\blacksquare ABCD = m\overline{DC} \times m\overline{AL}$$
.

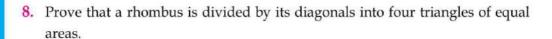
2. In the given figure, if the diagonals of a quadrilateral separate it into four triangles of equal area, show that it is a parallelogram.



3. In the given figure BC AD. ABC is a rightangled at vertex B with mBC = 7 cm and mAC = 11 cm, also $\triangle ABC$ and $\triangle BCD$ are on the same base \overline{BC} . Find the area of ΔBCD .



- 4. Show that a median of a triangle divides it into two triangles of equal area. Give conditions and use name in questions.
- 5. Show that the line segment joining the mid-points of the opposite sides of a rectangle, divides it into two equal rectangles.
- If two parallelograms of equal areas have the same or equal bases, their altitudes are equal.
- 7. Show that an angle bisector of an equilateral triangle divides it into two triangles of equal areas.



Review Exercise 14

1. Mark 'T' for True and 'F' for False in front of each given below:

- Area of a closed figure means region enclosed by bounding (i) lines of the figure.
- (ii) A diagonal of rectangle divides it into two congruent triangles.
- T/F (iii) Congruent figures have different areas.
- The area of parallelogram is equal to the product of base and (iv) T/F height.
- Median of a triangle means perpendicular from a vertex to the (v) T/F opposite side (base).
- Perpendicular distance between two parallel lines can (vi) sometimes be different. T/F
- An altitude drawn from a vertex always bisects the opposite (vii) T/F
- (viii) Two triangles are equal in areas, if they have the same base and equal altitude. T/F

Tick (✓) the correct answer.

- (i) If perpendicular distance between two lines is the same. The lines are
 - (a) Perpendicular to each other
- (b) Parallel to each other
- (c) Intersecting to each other
- (d) None of these.
- If two triangles have equal areas then they will _____ congruent as well.
 - (a) Not necessarily
- (b) Necessarily

(c) Definitely

- (d) None of these.
- (iii) Perpendicular from a vertex of a triangle to its opposite side is called
 - (a) Median

(b) Perpendicular bisector

(c) Altitude

(d) Angle bisector

(iv)	Parallelograms having same base and same altitude are		
	(a) Congruent	(b) Equal in areas	
	(c) Similar	(d) All of these.	
(v)	Two parallelograms have equ	ual bases. They will be having the	
	same area, if		
	(a) Their altitudes are equal	()_v	
	(b) Their altitude is the same	01	
	(c) They lies between the same parallel lines		
	(d) All of these.	~0.	
(vi)	ΔABC and ΔDEF have equa	l bases and equal altitudes, then	
	triangles are	. 1	
	(a) Equal in area	(b) Congruent	
	(c) Similar	(d) None of these.	

Summary

- In this unit we have mentioned some necessary preliminaries, stated and proved the following theorems along with corollaries, if any.
- Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in areas.
- Parallelograms on the equal bases and having the same (or equal) altitude are equal in areas.
- Triangles on the same base and of the same (i.e. equal) altitudes are equal in areas.
- Triangles on equal bases and of equal altitudes are equal in areas.
 - Area of a figure means region enclosed by the boundary lines of a closed figure.
- A triangular region means the union of triangle and its interior.
- By area of triangle means the area of its triangular region.
- Altitude or height of a triangle means perpendicular distance to base from its opposite vertex.

