# UNIT

# **ARITHMETIC AND GEOMETRIC SEQUENCES**

- Sequence
- **Arithmetic Sequence**
- **Arithmetic Mean**
- **Geometric Sequence**
- Geometric Mean

#### After completion of this unit, the students will be able to:

- Define a sequence (progression) and its terms.
- ▶ Know that a sequence can be constructed form a formula or an inductive definition.
- Identify arithmetic sequence.
- ▶ Find the *n*th or the general term of an arithmetic sequence.
- ▶ Solve problems involving arithmetic sequence.
- ▶ Know arithmetic mean between two numbers.
- ▶ Insert n arithmetic means between two numbers.
- Identify a geometric sequence.
- ▶ Find the *n*th or the general term of a geometric sequence.
- Solve problems involving geometric sequence.
- Know geometric mean between two numbers.
- Insert n geometric means between two numbers.

# 7.1 SEQUENCE (Progression)

In our daily life, we often observe things which increase or decrease progressively by fixed amounts. For example:

- 1- Number of days pass in a year by 7 days every week.
- 2- Our age increases by 12 months every year.
- 3- The price of a thing increases by a fixed amount, as you increase the number of units of that thing one-by-one.

In order to study such situations from daily life, let us consider the concept of a sequence. A sequence is an arrangement of numbers written in definite order according to some specific rule. A sequence is also called progression.

Look at the following number patterns.

i- 1,3,5,7,9,...
ii- 2,4,6,8,10,...
iii- 1,4,9,16,25,...
iv- 
$$1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}$$
,...
v-  $1,\frac{1}{3},\frac{1}{9},\frac{1}{27},\frac{1}{81}$ ,...

From these number patterns, it can be noticed that each successive number, can be found by applying a specific rule that justifies the position of succeeding one. This shows that all the numbers of each pattern are in a definite order.

From (i), the rule is:

Start with 1, then add 2 to each term to get the next term.

From (ii), the rule is:

Start with 2, then add 2 to each term to get the next term.

From (iii), the rule is:

Square each number of 1, 2, 3, 4, 5,...

From (iv), the rule is:

Start with 1, and multiply each term by  $\frac{1}{2}$  to get the next term.

From (i), to (iv) we say each pattern form a number sequence. The number in a sequence are the terms of the sequence.

To represent a sequence, a special notation  $a_n$  is adopted and the symbol  $\{a_n\}$  or  $a_1, a_2, a_3, \dots a_n, \dots$  is used. (Read the final dots "…" as "and so forth").

# 7.1.1 Finite and Infinite Sequences

Look at the following number patterns.

(i) 1,2,3,4,···

(ii) 1,3,5,7,···, 15

(iii)  $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ 

(iv) 2,4,6,8,..., 20

(v) 1,4,7,10,···

(vi)  $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$ 

If there is a last term in a sequence, it is called a finite sequence. In the above examples, (ii) and (iv) are finite sequences.

If there is no last term in a sequence, it is called an **infinite sequence**. In the given examples (i), (iii), (v), (vi) are infinite sequences.

### 7.1.2 Construction of a Sequence from a Formula

Now we write the sequence with the help of nth term.

If 
$$a_n = 2n + 3$$
,  $n = 1, 2, 3, \dots, 8$  then
$$a_1 = 2 \times 1 + 3 = 2 + 3 = 5$$

$$a_2 = 2 \times 2 + 3 = 4 + 3 = 7$$

$$a_3 = 2 \times 3 + 3 = 6 + 3 = 9$$

$$a_4 = 2 \times 4 + 3 = 8 + 3 = 11$$

$$a_5 = 2 \times 5 + 3 = 10 + 3 = 13$$

$$a_6 = 2 \times 6 + 3 = 12 + 3 = 15$$

$$a_7 = 2 \times 7 + 3 = 14 + 3 = 17$$

$$a_8 = 2 \times 8 + 3 = 16 + 3 = 19$$
The sequence is  $5, 7, 9, 11, 13, 15, 17, 19$ .

The terms of the sequence  $\{a_n\}$  have been written by assigning the values 1,2,3,...,8 to n. For example:

If 
$$a_n = (-1)^{n+1}$$
  $(n+3)$  and  $n=1,2,3,4$  then
$$a_1 = (-1)^{l+1} (1+3) = (-1)^2 (4) = 1 \times 4 = 4$$

$$a_2 = (-1)^{2+1} (2+3) = (-1)^3 (5) = -1 \times 5 = -5$$

$$a_3 = (-1)^{3+1} (3+3) = (-1)^4 6 = 1 \times 6 = 6$$

$$a_4 = (-1)^{4+1} (4+3) = (-1)^5 7 = -1 \times 7 = -7$$
The sequence is : 4, -5, 6, -7.

With the help of nth term, we can write any desired term by giving a particular value to "n".

#### FXERCISE - 7.1

Write the first three terms of the following:

(i) 
$$a_n = n + 3$$

(ii) 
$$a_n = (-1)^n n^3$$

(iii) 
$$a_n = 3n + 5$$

(iv) 
$$a_n = \frac{n+1}{2n+5}$$

(i) 
$$a_n = n+3$$
 (ii)  $a_n = (-1)^n n^3$  (iii)  $a_n = 3n+5$   
(iv)  $a_n = \frac{n+1}{2n+5}$  (v)  $a_n = \frac{1}{(2n-1)^2}$  (vi)  $a_n = n+3=2$ 

$$(vi) \quad a_n = n + 3 = 2$$

(vii) 
$$a_n = \frac{1}{3^n}$$

(viii) 
$$a_n = 3n - 5$$

(vii) 
$$a_n = \frac{1}{3^n}$$
 (viii)  $a_n = 3n - 5$  (ix)  $a_n = (n+1)a_{n-1}, a_1 = 1$ 

2- Find the terms indicated in the following sequences.

(i) 2,6,11,17,...,
$$a_8$$
 (ii) 1,3,12,60,..., $a_7$  (iii) 1, $\frac{1}{3}$ , $\frac{1}{9}$ , $\frac{1}{27}$ ,..., $a_6$ 

$$(iv) = 1, 1, 3, 5, \dots, a_g$$

(v) 
$$\frac{1}{3}, \frac{2}{5}, ..., a_5$$

(iv) 
$$-1,1,3,5,...,a_9$$
 (v)  $\frac{1}{3},\frac{2}{5},...,a_5$  (vi)  $1,-3,5,-7,...,a_9$ 

3- Find the next four terms of the following sequences.

(iv) 
$$9,11,14,17,19,22,...$$
 (v)  $4,8,12,16,...$  (vi)  $-2,0,2,4,6,8,10,...$ 

# ARITHMETIC SEQUENCE (Progression)

An arithmetic progression (abbreviated A.P) is a sequence of numbers called terms, each of which after the first is obtained from the preceding one by adding to it a fixed number called "common difference" of the progression.

Let 'a' be the first term and 'd' be the common difference in an A.P. Then the second term is a + d, the 3rd term is a + 2d. In each of these terms the co-efficient of d is one less than the number of the term. Similarly the 10th term is a + 9d.

The *nth* term is (n-1)th after the 1st term and thus is obtained after 'd' has been added (n-1) times, then

General term = 
$$nth$$
 term =  $a_n = a + (n-1) d$ .

If we take 
$$n = 12$$
 then  $12th$  term =  $a_{12} = a + (12 - 1)d = a + 11d$ 

Find the general term and the 14th term of an A.P., whose 1st term is 2 and the common difference is 5.

**SOLUTION:** Given  $a_1 = a = 2$ , d = 5, we know that:

$$a_n = a + (n-1)d$$
  
=  $2 + (n-1)5$   
=  $2 + 5n - 5$   
=  $2 - 5 + 5n$   
=  $5n - 3$ 

General term = nth term =  $a_n = 5n - 3$ 

Now putting n = 14 in equation  $a_n = a + (n - 1)d$ , we have

$$a_{14} = a + (14-1)d$$
  
=  $2 + 13 \times 5$   
=  $2 + 65$   
=  $67$   
 $a_{14} = 67$ 

#### **EXAMPLE-2**

If 5th term of an A.P is 16 and 20th term is 46, what is the

**SOLUTION:** Given 
$$a_5 = 16$$
 and  $a_{20} = 46$ 

Since 
$$a_n = a + (n-1)d$$
 ......(1)

Putting n = 5 in equation (1), we have

$$a_5 = a + (5-1)d$$

$$16 = a + 4d$$
 ...... (2)

Putting n = 20 in equation (1), we have

$$a_{20} = a + (20 - 1)d$$

$$46 = a + 19d$$
 ......(3)

Subtracting equation (2) from (3), we have

$$46 - 16 = a - a + 19d - 4d$$

$$30 = 15d \implies \boxed{d = 2}$$

Putting d = 2 in equation (2), we have

$$16 = a + 4 \times 2$$

$$16 = a + 8 \implies 16 - 8 = a$$

$$\Rightarrow a = 8$$

Putting n = 15 in equation (1), we have

THE RESERVE TO A STREET

A What teles a Land of

The name of the property of the

$$a_{15} = a + (15 - 1)d$$

Thus 
$$a_{15} = 36$$

#### **EXAMPLE-3**

Find the number of terms in an A.P.,

if 
$$a_1 = 3$$
,  $d = 4$ ,  $a_n = 59$ 

**SOLUTION:** Given  $a_1 = a = 3$ , d = 4,  $a_n = 59$ 

Since 
$$a_n = a + (n-1)d$$

$$59 = 3 + (n-1)4$$

$$= 3 + 4n - 4$$

$$60 = 4n$$

$$n=\frac{60}{4}=15$$

$$n = 15$$

Thus the number of terms in the given A.P is 15.

Not for Sale-PESRF

If 
$$a_{n-3} = 2n - 12$$
, find  $a_n$ .

**SOLUTION:** Given 
$$a_{n-3} = 2n - 12$$

Putting 
$$n = n+3$$
, we have,

$$a_{n+3-3} = 2(n+3)-12$$

$$a_n = 2n + 6 - 12$$

$$=2n-6$$

$$a_n = 2n - 6$$

#### FXERCISE - 7.2

- 1- Find the specified term of the following A.P.
  - (i) 3,7,11,..., 61st term.
- (ii)  $-4, -7, -10, \dots, a_{10}$
- (iii) 6.4.2.... 45th term.
- (iv) 9,14,19,...,a,

- (v) 11,6,1,...,a,
- 2- Find the missing element using the formula of A.P  $a_n = a + (n-1)d$ 
  - (i) a = 2,  $a_n = 402$ , n = 26, (ii)  $a_n = 81$ , d = -3, n = 18

  - (iii) a = 5,  $a_n = 61$ , n = 15 (iv) a = 16,  $a_n = 0$ ,  $d = -\frac{1}{4}$

  - (v) a = 10,  $a_n = 400$ , d = 5 (vi)  $a_n = 261$ , d = 4, n = 18
- 3- Find the  $15^{th}$  term of an A.P where the  $3^{rd}$  term is 8 and the common difference is  $\frac{1}{2}$ .
- Which term of an A.P  $6,2,-2, \dots$  is -146?
- Which term of an A.P 5,2,-1, ... is -118?
- How many terms are there in an A.P. in which  $a_1 = a = 11$ ,  $a_n = 68$ , d = 3.
- 7- Find the 11th term of an A.P 2-x, 3-2x, 4-3x, ...
- **8.** Find the  $n^{th}$  term of an A.P, where  $a_{n-1} = 3n + 9$ .
- 9. Find the  $n^{th}$  term of an A.P:  $\left(\frac{3}{4}\right)^2, \left(\frac{3}{7}\right)^2, \left(\frac{3}{10}\right)^2, \dots$
- 10- If the  $n^{th}$  term of an A.P is 3n-5. Find the A.P.

# 7.3 ARITHMETIC MEAN

A number 'A' is said to be an arithmetic mean between the two numbers 'a' and 'b', if a, A, b is an A.P.

$$A-a=b-A$$
 (Common Difference)  
 $A+A=a+b$   
 $2A=a+b$   
 $A=\frac{a+b}{2}$ 

#### **EXAMPLE-1**

Find A.M between 4 and 8. **SOLUTION:** Given a = 4, b = 8

$$A = \frac{a+b}{2}$$

$$= \frac{4+8}{2}$$

$$= \frac{12}{2} = 6$$

A.M represents
Arithmetic Mean

# A = 6 **EXAMPLE-2**

Find an A.M between  $2\sqrt{5}$  and  $6\sqrt{5}$ .

**SOLUTION:** Given  $a = 2\sqrt{5}$ ,  $b = 6\sqrt{5}$ 

$$A = \frac{a+b}{2}$$

$$= \frac{2\sqrt{5} + 6\sqrt{5}}{2}$$

$$= \frac{8\sqrt{5}}{2}$$

$$= 4\sqrt{5}$$

# 7.3.2 Arithmetic Means Between Two Numbers

Let  $A_1, A_2, A_3 \cdots A_n$ , be "n" A.Ms between the two

numbers a and b, such that  $a, A_1, A_2, A_3 \dots, A_n$ , b is an A.P.

Here  $a_1 = a$ ,  $a_{n+2} = b$ , because there are n+2 terms in an A.P.

Using 
$$a_n = a + (n-1)d$$
, we have

$$a_{n+2} = a + (n+2-1)d$$

$$b = a + (n+1)d$$

$$b-a=(n+1)d$$

$$\frac{(b-a)}{n+1} = d \quad \text{or} \quad \boxed{d = \frac{b-a}{n+1}}$$

$$A_1 = a + d = a + \frac{b-a}{n+1} = \frac{an+a+b-a}{n+1} = \frac{na+b}{n+1}$$

$$A_2 = a + 2d = a + 2\left(\frac{b-a}{n+1}\right) = \frac{na+a+2b-2a}{n+1} = \frac{na+a+2b}{n+1} = \frac{(n-1)a+2b}{n+1}$$

$$A_3 = a + 3d = a + 3\left(\frac{b-a}{n+1}\right) = \frac{na+a+3b-3a}{n+1} = \frac{na-2a+3b}{n+1} = \frac{(n-2)a+3b}{n+1}, \dots,$$

$$A_n = a + nd = a + n\left(\frac{b-a}{n+1}\right) = \frac{na+a+nb-na}{n+1} = \frac{a+nb}{n+1}$$

#### **EXAMPLE-1**

If 8 and 12 are two A.Ms between a and b. Find a and b.

SOLUTION: a, 8, 12, b is an A.P.

Common difference = d

$$=a_3-a_2$$

$$= 12 - 8 = 4$$

and 
$$b = a_4$$

$$= a_3 + d$$

$$b = 12 + 4 = 16$$

$$a = a_2 - d$$

$$= 8 - 4 = 4$$
Thus  $a = 4, b = 16$ 

Find three A.Ms between  $\sqrt{3}$  and  $9\sqrt{3}$ .

**SOLUTION:** Let  $A_1, A_2, A_3$  be three A.Ms between  $\sqrt{3}$  and  $9\sqrt{3}$ 

such that  $\sqrt{3}$ ,  $A_1$ ,  $A_2$ ,  $A_3$ ,  $9\sqrt{3}$  is an A.P.

Here 
$$a_1 = a = \sqrt{3}$$
,  $n = 5$ ,  $a_5 = 9\sqrt{3}$ 

TA GEOMETRIC SECTEDICE (P.

Using 
$$a_n = a + (n-1)d$$

$$a_5 = a + (5-1)d$$

$$9\sqrt{3} = a + 4d$$

$$9\sqrt{3} = \sqrt{3} + 4d$$

$$9\sqrt{3}-\sqrt{3}=4d$$

$$4d = 8\sqrt{3}$$

$$d=2\sqrt{3}$$

Thus 
$$A_1 = a + d = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3}$$

$$A_2 = A_1 + d = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$$

$$A_3 = A_2 + d = 5\sqrt{3} + 2\sqrt{3} = 7\sqrt{3}$$

Thus  $3\sqrt{3}$ ,  $5\sqrt{3}$ ,  $7\sqrt{3}$  are the required three A.Ms between  $\sqrt{3}$  and  $9\sqrt{3}$ .

F XERCISE - 7.3

1- Find A.M between:

(i) 
$$-3,7$$

(ii) 
$$x-1, x+7$$

(iii) 
$$\sqrt{7}$$
,  $3\sqrt{7}$ 

(iv) 
$$x^2 + x + 1$$
;  $x^2 - x + 1$ 

- 2- If 3 and 6 are two A.Ms between a and b, find a and b.
- 3- Find three A.Ms between 11 and 19.
- **4-** Find three A.Ms between  $\sqrt{2}$  and  $6\sqrt{2}$
- 5- Find six A.Ms between 5 and 8.
- 6- Find seven A.Ms between 8 and 12.
- 7- If the A.M between 5 and b is 10, then find the value of b.
- 8- If the A.M between a and 10 is 40, then find the value of "a".
- 9- If the three A.Ms between a and b are 5,9 and 13, find a and b.

# 7.4 GEOMETRIC SEQUENCE (Progression)

A geometric progression (abbreviated *G.P*) is a sequence of numbers called terms, each of which after the first is obtained by multiplying the preceding one by a fixed number called common ratio. This common ratio is denoted by 'r' which cannot be zero jn any case. We can obtain common ratio as:

$$r = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \dots = \frac{a_n}{a_{n-1}} = \dots$$

Let a be the first term and r be the common ratio in a G.P, then the second term is ar. Third term is  $ar^2$ . In each term the exponent of r is one less than the number of the term. Similarly the eighth term is  $ar^7$  and nth term is  $ar^{n-1}$ . Thus the general term of G.P is  $a_n = ar^{n-1}$ 

#### **EXAMPLE-1**

Find the 5th term of a G.P, in which a = 2, r = 3.

**SOLUTION:** Given 
$$a = 2$$
,  $r = 3$ ,  $n = 5$ ,  $a_5 = ?$ 

Since 
$$a_n = ar^{n-1}$$

$$a_5 = ar^{5-1}$$
 $a_5 = 2(3)^4$ 
 $= 2 \times 81$ 
 $= 162$ 
 $a_5 = 162$ 

If 
$$a_4 = \frac{8}{27}$$
,  $a_7 = \frac{-64}{729}$  in G.P. Find  $a_{10}$ .

**SOLUTION:** Given 
$$a_4 = \frac{8}{27}$$
,  $a_7 = \frac{-64}{729}$ ,

Here we will find a and r first.

Since 
$$a_n = ar^{n-1}$$
 $a_4 = ar^{4-1}$ 
 $\frac{8}{27} = ar^3$ 
 $ar^3 = \frac{8}{27}$  ......(i)

and  $a_7 = ar^{7-1}$ 
 $\frac{-64}{729} = ar^6$ 
 $ar^6 = -\frac{64}{729}$  ......(ii)

Now dividing (ii) by (i), we have,  $\frac{ar^6}{ar^3} = \frac{-64}{729}$ 

$$r^{3} = \frac{-64 \times 27}{729 \times 8} = -\frac{8}{27} = \left(-\frac{2}{3}\right)^{3}$$

$$r = -\frac{2}{3}, \text{ putting in (i)}$$

$$a\left(-\frac{2}{3}\right)^3 = \frac{8}{27} \implies a\left(-\frac{2}{3}\right)^3 = \left(\frac{2}{3}\right)^3$$

$$a = -1$$

$$a = -1$$
Then  $a_{10} = ar^{10-1}$ 

$$=(-1)\left(\frac{2}{3}\right)^9 = -\left(\frac{2}{3}\right)^9$$

#### FXERCISE - 7.4

188

- 1- Find the 7th term of a G.P 2,8,32, ...
- 2- Find the 11th term of a G.P 2,6,18,...
- 3- Find the  $6^{th}$  term of a  $G.P. -\frac{3}{2}, 3, -6, \dots$
- 4- Find the 5th term of a G.P 4,-12,36,...
- 5- Find the missing elements of the G.P.:

(i) 
$$r = 10$$
 ,  $a_n = 100$  ,  $a = 1$    
(ii)  $a_n = 400$  ,  $r = 2$  ,  $a = 25$    
(iii)  $a = 128$  ,  $r = \frac{1}{2}$  ,  $a_n = \frac{1}{4}$ 

- **6-** Find the  $11^{th}$  term of a G.P whose  $5^{th}$  term is 9 and common ratio is 2.
- 7- Find the 13th term of a G.P whose 7th term is 25 and common ratio is 3.
- **8-** If a,b,c,d are in G.P, show that, a-b, b-c, c-d, are in G.P.
- 9- Find the  $n^{th}$  term of a G.P, if  $\frac{a_5}{a_3} = \frac{4}{9}$  and  $a_2 = \frac{4}{9}$ .
- 10- Find three consecutive numbers in G.P, whose sum is 26 and their product is 216.
- 11- Find the 30th term of a G.P x,1,  $\frac{1}{x}$ ,...
- 12- Find the pth term of a G.P x,x3,x5,...

# 7.5 GEOMETRIC MEAN (G.M)

A number 'G' is said to be a geometric mean between the two numbers a and b, if a, G, b is a geometric progression.

$$\frac{G}{a} = \frac{b}{G} (common \ ratio)$$

$$G^2 = ab$$

$$G = \pm \sqrt{ab}$$

Find the G.M between 3 and 27.

**SOLUTION:** Given a = 3, b = 27. then

$$G = \pm \sqrt{ab}$$

$$= \pm \sqrt{3 \times 27}$$

$$= \pm \sqrt{81}$$

$$= \pm 9$$

#### **EXAMPLE-2**

Find the G.M between  $2x^2$  and  $8y^4$ .

**SOLUTION:** Given  $a = 2x^2$ ,  $b = 8y^4$ 

$$G = \pm \sqrt{ab}$$

$$= \pm \sqrt{2x^2 \times 8y^4}$$

$$= \pm \sqrt{16x^2 y^4}$$

$$= \pm \sqrt{(4xy^2)^2}$$

$$= \pm 4xy^2$$

#### 7.5.1 'n' Geometric Means Between Two Numbers

Let  $G_1, G_2, G_3 \cdots, G_n$  be the n G.Ms between the two numbers a and b such that  $a, G_1, G_2, G_3 \cdots, G_n, b$  is a G.P, there are n+2 terms in this G.P. in which  $a_1 = a$ ,  $a_{n+2} = b$ , Using  $a_n = ar^{n-1}$ 

$$a_{n+2} = ar^{n+2-1}$$

$$b = ar^{n+1}$$

$$r^{n+1} = \frac{b}{a}$$

$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

$$G_{1} = a \times r = a \times \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

$$G_{2} = G_{1} \times r = ar^{2} = a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}$$

$$G_{3} = G_{2} \times r = ar^{3} = a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$G_{n} = G_{n-1} \times r = ar^{n} = a \times \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

190

#### **EXAMPLE-1**

Insert two G.Ms between 4 and  $\frac{1}{2}$ .

**SOLUTION:** Let  $G_1, G_2$  be the two G.Ms between 4 and  $\frac{1}{2}$  such that:

4, 
$$G_1$$
,  $G_2$ ,  $\frac{1}{2}$  is a G.P,

Here  $a = 4$ ,  $n = 4$ ,  $a_4 = \frac{1}{2}$ ,

Since  $a_n = ar^{n-1}$ 
 $a_4 = ar^{4-1}$ 
 $\frac{1}{2} = ar^3$ 
 $ar^3 = \frac{1}{2}$ 
 $4r^3 = \frac{1}{2}$ 
 $r^3 = \frac{1}{8} = \frac{1}{2^3}$ 
 $r^3 = \left(\frac{1}{2}\right)^3$ 
 $r = \frac{1}{2}$ 

Thus  $G_1 = a \times r = 4 \times \frac{1}{2} = 2$ 
 $G_2 = G_1 \times r = 2 \times \frac{1}{2} = 1$ 

#### FXERCISE - 7.5

1- Find G.M between: (i) 9 and 5 (ii) 4 and 9 (iii) -2 and -8.

2- Insert two G.Ms between: (i) 1 and 8 (ii) 3 and 81

3- Insert three G.Ms between: (i) 1 and 16 (ii) 2 and 32

4- Insert four real geometric means between 3 and 96.

5- The A.M between two numbers is 5 and their positive G.M is 4. Find the numbers.

**6-** The positive *G.M* between two numbers is *6* and the *A.M* between them is *10*. Find the numbers.

**7-** Show that the *A.M* between the two numbers 4 and 8 is greater than their geometric mean.

8- Insert four geometric means between 160 and 5.

9- Insert three geometric means between 486 and 6.

10- Insert four geometric means between  $\frac{1}{8}$  and 128.

11- Insert six geometric means between 56 and  $-\frac{7}{16}$ 

12- Insert five geometric means between  $\frac{32}{81}$  and  $\frac{9}{2}$ .

#### Review Exercise - 7

#### 1- Encircle the correct answer.

- (i) Third term of  $a_n = n+3$ , when n = 0 is

- (b) 6 (c) 9 (d) 0
- (ii) Fourth term of  $a_n = \frac{1}{(2n-1)^2}$ , when n=0 is

  - (a)  $\frac{1}{7}$  (b)  $\frac{1}{49}$  (c)  $\frac{1}{81}$  (d) 0
- (iii) For 2,6,11,17, ...,  $a_5$  is
  - (a) 24
- (b) 30
- (c) 21 (d) 22
- (iv) Next term of 12,16,21,27 is
  - (a) 34
- (b) 30
- (c) 31 (d) 32

- (v) a6 of 3,7,11, ... is

- (b) 19 (c) 23 (d) 20
- (vi) A.M between  $\sqrt{3}$  and  $3\sqrt{3}$  is
  - (a)  $2\sqrt{3}$

- (b)  $5\sqrt{3}$  (c)  $9\sqrt{3}$  (d)  $4\sqrt{3}$
- (vii) A.M between  $2\sqrt{5}$  and  $6\sqrt{5}$  is
  - (a) 4\sqrt{5}

- (b)  $3\sqrt{5}$  (c)  $5\sqrt{5}$  (d)  $7\sqrt{5}$
- (viii) a5 of 2,6,18, ... is
  - (a) 160
- (b) 161 (c) 162 (d) 30

- G.M between -3 and -12 is (ix)
  - (a) ±6
- (b) ±9
- (c)  $\pm 36$  (d)  $\pm 3$
- G.M between 1 and 8 is (x)
  - (a)  $2\sqrt{2}$
- (b)  $\pm 2\sqrt{2}$  (c)  $-2\sqrt{2}$  (d)  $\sqrt{2}$

#### 2- Fill in the blanks.

- The general or nth term of a sequence is denoted by\_\_\_\_\_ contraction and description
- (ii) If  $a_n = 2n + 3$ , then  $a = \frac{1}{2n+3}$
- (iii) In an A.P  $a_n = a + (n-1)d$ , is called
- (iv) A.M between 5 and 15 is \_\_\_\_\_
- (v) If a,A,b is an A.P then A =
- (vi) In a G.P. "r" is called \_\_\_\_\_
- (vii) In a G.P,  $a_n =$ \_\_\_\_\_\_
- (viii) If a, G, b is a G.P, then G =
  - (ix) Positive geometric mean between 2 and 8 is
  - (x) The nth term of an A.P when  $a_{n-5} = 3n + 9$
  - 3- Find the general term and the 18th term of an A.P., whose first term is 3 and the common difference is 2.
  - Find the *nth* term of an  $A.P\left(\frac{3}{5}\right)^3, \left(\frac{3}{7}\right)^3, \left(\frac{3}{9}\right)^3, \dots$
  - 5- If the A.M between a and 16 is 24. Then find the value of 'a'.
  - Find the 15th term of a G.P. whose 7th term is 27 and common ratio is 3.
  - 7- Insert four Geometric Means between  $\frac{1}{2}$  and 16.
  - Find the three consecutive number in G.P, whose sum is 26 and their product is 216.

#### SUMMARY

- In a number pattern each successive number can be found by applying a specific rule that justifies the position of succeeding one, that is all the members in a pattern are in a definite order, such a number pattern is called a sequence.
- A sequence in which each term is obtained from the previous term by adding a fixed number is called an arithmetic sequence.
- A number "A" is said to be an arithmetic mean between the two numbers a and b if a, A, b is arithmetic sequence.
- A sequence in which each term is obtained from the previous term by multiplying it with a common ratio is called a geometric sequence.
- A number "G" is said to be a geometric mean between the two numbers a and b if a,G,b is a geometric sequence.