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‘Major Concepts
Simple Harmonic Motion (SHM) - This chapter is built on
Circular motion and SHM ‘ Circular Motion Physics XI
Practical SHM system (mass spring and sxmple Oscillation & Waves Physics
pendulum) XI

Energy conservation in SHM
Free and forced oscillations

Resonance
Damped oscillations N ,
Studénts Learning Outcomes' 0 mmmE—————"—"

After studying this unit, the students will be able to:

e Describe simple examples of free oscillations.
Describe necessary conditions for execution of simple harmonic motions.

‘Describe that when an object moves in a circle, the motion of its projection on the

[ ]
I diameter of the circle is SHM.
Define the terms amplitude, period, frequency, angular frequency and phase

1
difference and express the period in terms of both frequency and angular frequency.
Idertify and use the equation; a= - @’x as the defining equation of SHM.

[ ]

e, Prove that the motion of mass attached to a spring is SHM.

’ e Describe the interchanging between kinetic energy and potential energy during SHM.
e Analyze the motion of a simple pendulum is SHM and calculate its time period.
 Describe practical exampies of free and forced oscillations (resonance).

e Describe graphically how the amplitude of a forced oscillation changes with
frequency near to the natural frequency of the system.

e - Describe practical examples of damped oscillations with particular reference to the
efforts of the degrec of damping and the importance of critical damping in cases such
as a car suspension system.

e Describe qualitatively the factors which determine the frequency response and

sharpness of the resonance.
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i1 INTRODUCTION sy

£ Besides translational and rotational motion, /TN

r s . . P o .

N therc i1s another important kind of motion that is k3 LY

'h\ - . . . . .

41  vibrational motion which has too many applications Y X

<l in physics as well as in our daily life. This kind of d \

' motion of a body is a to and fro motion about its A ,D

i : v : i ; Extame T

j mean position apd l.tS naturc 1s a pen-odlc motion noillinh A e
because the oscillating body repeats itself after a Mean position
regular intervals of time. Some examples of e Centrs position
oscillations are given below. 2%inging of a simple pendulum

(i) Swinging of a simple pendulum when it
is displaced from its mean position and
is made to free.

(i) Motion of a body attached to a spring

_ when it is pulled and then released.
a (iii) Vibration of prongs of the tuning fork
when it is struck on a rubber paid.

All the bodies that undergo vibrational or To e fro mction ofa by

oscillational motion have an equilibrium position or altached to a spring
= mean position. When the body is displaced from this mean position then there is a
restoring force which brings it back to its equilibrium position
= and it causes of vibration or oscillation motion of the body.

' The detailed study of vibrational motion helps us in
the understanding ‘of waves, sounds, light and alternating
current because it has been observed that vibrating bodies
produce waves. For example, a violin string produces sound
waves in air.

Resonance is a striking phenomenon which is related

} with vibrational motion and it plays a dynamic role in
communication system because maximum communication
> energy transfer is processed by transmitter and receiver due to Vibrating tuning fork
l - the resonance phenomenon.
» Though many systems cannot operate without resonance but it should be
l_ avoided in some cases such as aeroplane wings or helicopter rotor and suspension

bridges etc.

In this chapter we will study not only various parameters related to an
osciflating body but will also prove that the motions of a particle along a circle, a
body attached to a string and a simple pendulum are simple harmonic motion.
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| 7.1 SIMPLE HARMONIC MOTION (SHM) = ‘

=
: The back and forth motion of a body e’ | L»""l
it repeats in equal interval of time along the Sanzlc (a) o e [ g
: e

line is called periodic motion. On the other hanc, =0
. simple harmonic motion is the most important o

type of the periodic motion and it occurs when ) i a=0

the restoring force is directly proportional to the ) ’ m |

displacement from an equilibrium position. It e YO, X

can be explained with the example of a body of ._'—_o

mass ‘m’ attached to a spring which oscillates o

about equilibrium position ‘O’ on a horizontal : "'"____i '

frictionless surface as shown in Fig.7.1. Consider (c) W;m | ‘

a force ‘F’ that is applicd to displace the body B et ‘“':_‘fﬁ —
x=0

from its equilibrium position ‘O’ to an extreme

position through a distance ‘x’.
According to Hook’s law, the applied during its SHM

force is equal to kx, Where ‘k’ is a constant and (a) At the right extreme position

is called spring constant, and it has the (b)Atmcan position Ny

dimensions of force per unit length (Nm"). Due (c)Atthe left extreme position
’ / to the elasticity of the spring, an elastic restoring

Fig.7.1: Mass attached with spring

force (~kx)acts on the body whose magnitude is equal to applied force and its
direction is towards the mean position and there is also an acceleration which is
produced by such restoring force. This acceleration causes simple harmonic motion
in the body and is directly proportional to the displacement and is always directed
/ towards the mean position. These two conditions are known as the conditions that

must be obeyed by a body in order to execute simple harmonic motion.
According to Hook’s law the clastic restoring force is given by: -
b F=wlX csones (7.1)
Actording to Newton’s 2™ law of motion
F=ma ...... (7.2) | i
Comparing equation (7.1) and equation (7.2) '
ma=-kx

As the ratio (k/m) is a constant therefore,
r a=—(Constant)x
; aoc —x

7
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This is the mathematical form of simple harmonic motion. It states that the
acceleration of the body executing simple harmonic motion (SHM) is directly
proportional to the displacement and negative sign shows that it is directed toward

its mean position.

Example 7.1

A body of mass 0.25 kg is connected to a spring and it is oscillating on a
horizontal frictionless surface. If the maximum displacement of body is 20cm and
the spring constant is 10 N-m™ then what is the acceleration of the body?

Solution: m_= 0.25 k_gl POINT TO PONDER
k=10 Nm Can a lincar motion of a body be
x=20cm=0.2m SHM?

a="7?

(&
a= —| —|[x
m

a= —(—ﬂ)O.Z =—-8ms™
0.25

Negative sign shows that the motion of body is directed towards its mean position.

7.1.1 Characteristic of simple harmonic motion
Simple harmonic motion is a special kind of \g.\

periodic motion. It can be represented graphically by
demonstrating an experiment of mass spring system.
The experimental set up consists of a block of mass )6 \§

‘m’ attached with a spring which is hanging vertically
and remains at its equilibrium position ‘O’ as shown in \l‘x ;

Fig. 7.2.
) A sheet of paper with a suitable time scale is g I A
placed behind the block which is movirg at a constant Motion \ {
. speed from right to left. There is also a pen which is of paper ™
' attached with the vibrating mass which lightly touches  Fig.7.2: Pen and paper arrange-
the paper in order to record the variations in zi?ltla:?ngdl;:):ya graph of an
. displacement with time during the oscillation of mass.

When the block is displaced downward from its mean position to its extreme
position at a distance ‘ x’ and is made to free then it starts oscillation. As a result,
displacement against time appears on the paper in the form of sinusoidal-wave
which is known as wave form of simple harmonic motion as shown in Fig. 7.3.

The various parameters related with simple harmonic motion are summarized

@,

-

as:
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I Instantancous displacement

In vibrational motion, the distance from
the mean position at any instant is known as
instantaneous displacement. It is zero at the
instant when the body is at mean position and it
is maximum at the extreme position.

= Fig.7.3: A Sine wave shape of an
II) Amplitude oscillating body '

In Vibrational motion, the maximum distance from the mean position to
either extreme position is known as amplitude. The SI unit of amplitude is metre.

I1I) Vikration

One complete round trip of a body during its vibrational motion is called
vibration. For example, when the body starts its motion from its first extreme
position (=x) to the second extreme position (x) and then from the second extreme
position (x) to the first extreme position {—x) crossing the mean position (o) is called
one vibration as shown in Fig. 7.2.

IV) Time Period

Time period is defined as the time taken to complete one vibration or one
cycle. It is represented by “T” and its SI unit is second ‘s’.
V) Frequency

Frequency is defined as the number of vibrations complcted by the vibrating
body in one sccond. It is expressed in terms of the reciprocal of time period that is;

The unit of frequency is hertz (Hz) and it is equal to per second. The

-dimensional formula of frequency is [M°L°T™'].

VI)" Angular Frequency
Angular frequency is defined as the number of revolutions per unit time. It 1s

represented by ‘@’ and it can be expressed as;
0

- t
Now for one revolution 0 =27 radians and t = T (time period)

2n
0):—
T

v
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Solution:

As T= L
f
Therefore, o=2nf ... (7.5)

Tllxe SI unit of angular frequency is rad.s” and its dimensional formula is
MeLT™']
Example 7.2
A mass connected to a spring makes 15 vibrations in 45 second. Calculate its
period and frequency.
| POINTTO PONDER |
Every vibrating body produces a

sound. Does a simple pendulum also
produce a sound?

Numbers of vibration = 15
Time for 15 vibrations =45 s
T="?
f=2

Time period (T)= jgvent VS

No. of vibs.

Time period (T)=%= 3s

]
Frequency = f= —
] y T

Frequency = f= %c 0.333 Hz

12 CIRCULAR NlOTlON AND Light from projector
SIMPLE HARMONIC MOTION i ] | j | ‘

To study the simple harmonic motion,
consnderﬁa turntable of radius ‘r’ with a ball ——
attached to its rim. A beam of light casts @  motion
shadow of the ball on the screen as shown in  ofbal &;4 in

Fig.7.4.
When the turntable rotates with constant
angular speed ‘®’ then the ball also moves along Shadow P B
it with uniform circular motion. Its shadow on -B .) 4 §crcen
the screen oscillates executing to and fro motion Al Oscl“ﬂllon °f ball's Shadowﬂx

across the screen in the form of simple harmonic  [g.74: The oscillation of the shadow of
the ball on screen. The ball is attached

motion li i '
otion like a body attached to a spring. with uniformly rotating turn table,
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Now we can study the motion of the ball along the circumference of the turn
table and its resulting shadow on the screen along the diameter for one complete

cycle. .
Let the projection of the ball be on the mean position ‘O’ at t = 0 then after

. T e ; o.
some instant t = 7 the projection will be on the left extreme position ‘A’.
Similarly, after instant t = 5 the projection is again at the mean position 'O',

3T e s ; i .
at t ==, the projection is on the right extreme position ‘B’. Finally at t =T, the

projection reaches at its starting point i.c. the mean position O. Hence, one cycle is
completed. In the same way, the next cycles will also give the same result. When the
graph between displacement and time is plotted then we have a sinusoidal wave as
shown in Fig.7.5. This example clearly indicates that when an object moves along
the circumference of a circle, its projection on the diameter of the circle exccutes
S.H.M. The parameters such as displacement, velocity, acceleration, time period and
phase of the S,H.M by the projection of the particle are explained below.

téI Y
4 ==

2Dy —
t:l 9 IBID 2
2\ O Jt=o [o 1 T\ 3 /T s o
| 2 2\2 4 2
Cc

A : E

o —=|Disp

Fig.7.5: The wave shape
of the projection of the

=3—4T- —=Time ball executing S.H.M
7.2.1 Quantitative Analysis "
Consider a motion of particle ‘P’ along the :
circumference of circle of radius ‘r’ with uniform vy = A
angular velocity ‘®’. Its lincar velocity at point ‘P’ / a,!
is along the tangent (v, = rw) and its acceleration ap .

is directed towards the centre of circle as shown in
Fig. 7.6. The value of acceleration is given as;

a =— VUV=ro
4 r
r‘e’ Fig.7.6: A particle which i_s movipg
ap, = I along a circular path of circle wn.th
: g uniform angular velocity and its

linear velocity v, is tangent.
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The particle *P” is making an angJe ‘g and i -

: A 1t > .
.« which are shown in Fig. 7.7. S Projection point on a diameter
Wherl.ﬂ_le particle moves along the circumference,
arts its motion along the diameter from point 4 1o point B
.4’ about the mean position “O” performing simple h

Its projection ‘Q’ also
then point ‘B’ to point
armonic motion,

Displacemem ;
it (gt~ 0 the particle ‘P’ subtends an 0 P
angle /POQ=0=0t with OQ and the / e
r

displacement of Q is “x” which is equal to OQ as

|
|
|
. . |
shown in Fi1g. Tt B N
Considering triangle POQ o X Q
opP
X

— = cosmt

r Fig.7.7:  Displacement  of  the
L projection Q of particle P along the
X=rcosot ...... (7.7) diameter AB.

Eq. (7.7) gives the instantaneous displacement of
point Q which is exccuting simple harmonic motion (SHM).

Velocity

In Fig. 7.8, the line PR is the horizontal
component of velocity vp of the particle and it is
parallel to the diamecter ‘AB’ of the circle.

C
“ 90-0A P
Therefore, / R
vo=(vp), f X
= v, c0s(90° —0) 3!4 A

AP

Pr - —

v
Q
Since v, =rw and cos(90° —0) =sin0
Vg = rosind . ..... (7.8)

But  sin*0+cos’0=1

‘ ' = 2 Fig.7.8: Velocity of the projection Q
DRSS of particle P along the diameter AB.

Equation 7.8 becomes

Vo = rov1—cos’0

2 X
x . —
Vo =10 1—;—2— [.cose ' ]




Vg =OVE =% sueees (7.9)

It may be noted that at mean position x = 0and velocity is maximum,

Acceleration

Acceleration “a,’ of the particle at point
‘P’ is directed towards the centre of the circle as
shown in Fig.7.9. The horizontal component of
a, is along the diameter. Thus the acceleration of

projection ‘Q’ is equal to the horizontal
component of a,.

aQ= _(al’)x
ag=—ap cos 0 S ; - .
The negative sign indicates that the F/&7:%:A porticle which is moving slong
) ) . . . a circular path of circle its acceleration is
direction of acceleration is always directed girected toward the centre,
towards the mean position. '

X X
aQ= —T®’ (——) { a, =rm’,cos0 = —:|
r _ r

aqQ= AR e (7.11)

As particle is moving in the circle with uniform angular frequency (®) thcr'cfo.rc, Eq.
(7.11) can be rewritten as;

agoc —X

This expression is the mathematical condition of S.H.M i.e. acceleration is
directly proportional to the displacement and negative sign shows that its direction
is towards the mean position. Therefore, it is concluded that when a particle is
moving along a circumference of a circle then its projection executes S.H.M.
Time Period

It is defined as the time is required to complete one vibration by ‘Q’ from

point A to B and then B to A. This is the same time in which the particle completes
one revolution. It is denoted by 'T".

Using the relationship o= 9

For one complete cycle, 0 = 2n radians and t = T (time period).

27

0= —
T

T 28 C
. .
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phase o
The phase of an oscillating body determines its positions and direction of
otion at a particular instant.

Consider the particle that moves along
the circular path of a circle. Let at time t = 0 the
pamc]e is at point ‘P’ and its position vector OP
makes an angle * ¢’ with OA. After some time
« the particle is at point P" as OP makes angle
g=o t with OP. This angle determines both
position and direction of the body at any instant
and it is called phase angle which varies with
time.

m

Now the total angle at point P is 0 + ¢ is
shown in Fig. 7.10. At time t = 0, phase =+¢.
Sometimes at t = 0 the phase = —¢. In general

Fig,7.10; Phase angle and phase constant
of a particle which is moving along a
the phase can be expressed as 0 = ¢ or ot + ¢, circle.

where ¢ is a phase constant which represents
the initial position of a particles and it remains constant.

Example 7.3

A particle vibrates according to the equation x =0. 3cosl6t Find amplitude,

frcquency and its position at t = 0. \

Solution: :
As given x =0.3coslé6t ...... (7.12)
The general equation for displacement of vibrating body is.

X=X,cosot ...... (7.13)

Comparing gquation (7.12) and equation (7.13)
X,=0.3m and ® = 16 vib/s

FOR YOUR INFORMATION

But @ =2nxf In SHM, the acceleration 3 is
_ 0 proportional to the displacement X
. but opposite in direction, and the tW0
\ 16 quantities are related by the square
S — of the angular frequency ©.
2(3.14)
f=2.55Hz
Position att=0
' x=0.3cos0°=0.3(1) sicosDh=]
x=03m

A\
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7.3 MASS-SPRING SYSTEM AND S.H.M

Consider a block of mass ‘m” which is attached to one end of a horizontal
spring. The other end of the spring is connected to a rigid support as shown in
Fig.7.11. Initially the block is at the mean
position on a frictionless horizontal surface i.e.
at rest and x = 0. When the block is displaced
through a small distance ‘x’ to the right then
according to Hook’s law there is a restoring
force which causes the oscillation of the mass
spring system. The acceleration produced by
restoring force is directed towards its mean

position and is given as;

a= —(ij; ..... (7.14)
m

Similarly, the acceleration of the particle moving in a circle executing simple

harmonic motion is given as;
; a=—0X...... (7.15)

Time Period
The time period of a mass attached to a spring, placed on a horizontal

frictionless surface and executes S.H.M., is defined as time taken to complete its one

round trip. Now,

Displacement
The displacement‘x” of the mass attached to the spring at time ‘t’ is given by;

318;
V




x =rcos® [ 0=ot]
_ X =rcosmt
But in case of mass attached to a spring r=x_, where x, is its amplitude

from mean position to extreme position as shown in Fig. 7.11.
Substitute the values of r and @ in x = rcos ot

X =X, cos\/Et " el (7.18)
m

[nstantaneous Velocity

We have studied that the velocity of the projection of the particle moving in a
circle is along the horizontal direction and at any instant of time t is given by:

A% =(D\]I'2-'X2

But in mass spring system, we take r =X, and ® =, |—
m

v =, |— /X2 —x CONCEPT CHECK

The period is the time required to

= complete one cycle.
k x2 (1 x> ] p y

v =,]—.[X] z
m X
k 2

V=X, — (1-%} ...... (7.19)
m X

= x| J1=0
VR = ( )
PR LA . (7.20)
m




7.4 SIMPLE PENDULUM

A simple pendulum is an ideal pendulum which consists of a solid bob of
mass ‘m’ suspended from a rigid support through a light inextensible string of

length ‘¢’. The pendulum stays at a fixed point if the string is in vertical position.
This point is called mean or equilibrium position. The forces acting on the solid bob

are,
(a) the weight of the pendulum “mg’ acting downward and
(b) the tension ‘T’ of the string acting in the upward direction along the
direction of string.
When the pendulum is displaced from its e —
mean position O through an angle ‘0’ to the ' Q\’“"; e
extreme position ‘P’, then a restoring force acts -‘-;r\[ miaseless and

unstretchal e

on the pendulum towards the mean position.
Due to this restoring force, the pendulum starts
oscillation to and fro under the action of gravity (
" along a curved path about the mean position
‘O’ as shown in Fig. 7.12. At extreme position o P,
. ll?e weight. of .the body mak.es an angie = ----Y. i gino
‘0’ with the direction of the string.  We can i,
resolve it into its rectangular components. As- tulvis proguational o <in Y,
the pendufum has no motion along the direction "1/, " <o o wml &
of the string therefore, the component mgcos0  apm vty simyl, n..,;....,..‘n‘m
and tension 'T' are along the same line but in Fig.7.12: An ideal simple pendulum
opposite direction so they cancel the effects of
each other The component mg sin0 provides the necessary restoring force and is
responsible for the motion of simpie pendulum. Thus;
F=-mg sin0
Negative sign shows that the accelcration of the pendulum is always directed
towards its mean position. According Newton’s 2™ law
’ F=ma
Comparing above equations
"ma =-mg sin0
a=-gsind ...... (7.22)
If the angle ‘0’ of the simple pendulum is small (i.e., © < 10°), then the sin0
can be réplaced by the angle 0 itself, expressed in radians. That is, for smal} angles
sin® =~ 0 -
So equation (7.22) is written as;
a=-g0...... (7.23)

@

Boboy naadeded

A% a0 feud it s
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By the definition of an angular displacement,

5o
[

- where ‘S’ is the actual path length followed by the pendulum. Thus

a= —(5)5
4

In Figure 7.12, ‘x’ is very nearly equal to the arc of length ‘S’ of the circular
path when the angle 0 is small (about 10° or less). Hence,

a= —(%)x ...... (7.24)

If length ‘¢’of the pendulum is fixed and ‘g’ remains constant for a given

place and (g/() is constant. Eq. (7.24) can be rewritten as;

a= —(constant) X
ao—x .
This is the mathematical form of S.H.M and it is concluded that the motion
of a simple pendulum is S.H.M.

As A= —0X ovri (7.25)
Comparing cquation (7.24) and equation (7.25)
=2 !
0 ' POINT TO PONDER
: Docs a vibrating simple pendalum
& = \/% ...... (7.26) produce any sound?
- Time period of a simple pendulum is given as
2n ( 0 21:)
= — ) ==E—=—
® t T
T =2k
&
4

The above expression shows that the time period of simple pendulum is
directly proportional to the square root of the length of the string and inversely
proportional to the square root of acceleration due to gravity. The time period of
motion of the pendulum is independent of the mass m of the bob and amplitude.




A pendulum that completes one vibration in two seconds, i.e., its time period is
two seconds is known a second pendulum.

The simple pendulum can be used to determine the gravitational acceleration
at a particular location. We measure the length / of the pendulum and then set the
pendulum into motion. The time period T of the simple pendulum is measured using

a stopwatch and the acceleration of gravity is calculated by using equation (7.27) in
the following form; .,

. DO YOU KNOW
g a4n2_1 ...... (7.28) If a pendulum is shifted from
i iy Karachi to Quetta than its time
Example 74 period will be increased.
What is the length of a second pendulum?
Solution: ‘
=17 .
T=2s CONCEPT CHECK |
{ A pendulum making small swings
T=2n g undergoes simple harmonic motion.
2 47'[2( |
T" =
l g

| 2 2
. -8l _O8@ _ 9941
4n”  4(3.14)
£=994 cm

75 CONSERVATION OF ENERGY IN S.HM

When a body is executing simple harmonic motion it possesses both potential
energy as well as kinetic energy. Its potential energy is on account of its
displacement from mean position and the kinetic energy is due to its velocity. These
energies vary during the oscillation, but the -total energy at any instant remains
constant in the absence of unbalanced resistive forces. In case of mass-spring
system, when the mass is displaced from the mean position ‘O’ then there is a
restoring force (F) whose value is zero at mean position when x = 0 and its value is
maximum at either extreme positions where x = x,. Thus average value of force
from the mean position to the extreme position is

F _chan+Fexl_O+F_E
“ 2 2 2
When displacement = 0 Force =0
When displacement = x, Force = kx,

B




lekx0
2

when the spring is stretched to its maximum displacement x,, work is done
on the spring which is given as under;
W= f:a = lk X, "X, :.I_kxz
2 2
This work done on the mass attached to a spring stores in terms of potential
energys called elastic potential energy. So we have

PE= %k X .....(129)

It is clear from Eq. (7.29) that potential energy of simple pendulum is zero at
0 and maximum at X = * X, i.e. the extreme position on either side.
After the removal of force, the mass attached to a sprmg starts its motion
with velocity v then the kinetic energy of the mass attached to spring is given as:

KE—lmv

Fromeq 1.19 « V=% ( ’ 1——

We can study the values of P.E. and K.E. at different positions. Using
Egs.(7.29) and (7.30) respectively.

At mean position
At mean position where x =0
Equation 7.29 and equation 7.30 becomes.

PE.=Lk(0)*=0 | CONCEPT CHECK |
2 The amplitude of vibrating body can |

1 0 be increased by the application of ‘
K.E.= > kxi l1-— - small forces at specific intervals. |
- X |
1, 3
K.E.= = kx;




T.E.=P.E+KE
T.E.=0+1kx§
2

1
2
We conclude that the potential energy of a simple pendulum, executing
S.H.M., at mean position is zero and its kinetic energy is maximum.
At extreme position
At extreme position we have x = + x, and Eq.(7.30) becomes;

1 x2) 1 1
K.E =Ekx§[l——2]=—2-kx§(1—l)=§kx§(0)

T.E=—kx1......(731)

X

0

K.E=0
PE= Lk

2
T.E=PE+K.E

We conclude that the kinetic energy of simple pendulum, executing S.H.M.,
at extreme positions on either side is zero and its potential energy is maximum.

At any position |
At any position x, where —x < x <x then we have,

: 2
K.E.=lkx§(1—x—2] |
2 X

0

P.E. = lk X
2
The total energy of simple pendulum, executing S.H.M., can be obtained by
adding above two equations i.€.,

T.E.=P.E+KE
2
TE.= lkx2 +lkx§ -
2 2 :
T.E: =lkx2 +lkx§ —lkx2 .
2 2 2 ;

]

T.E. =—;—kx2 ...... (7.33)

224




Equations (/.31), (7.32) anq (7 35

vhen a body executing SHM, the totq) ’Atx:t’“‘hEene, |

that v of the vibrating system I'€maing COnstant the Kinetj, engf Sal
energyhen the K.E. of the mass jq Maximuyyy, A:'::Oth " ,gy's""
e, w - through the centre of OSCi“ation’ ep°tent|a|eg:'!*-allkinetic
mass % of the mass spring is Zero (x = 0),, \\» Energ, } 0
the P.rsely when the P.E. of  the Spring is .
C(:;Z;um, mass 1s at its eXtreme Position on

m

ther side, the K.E. of the mass is zerq (v=0),
el.the7 13 shows the variation of P.E. ang K.E.
Flgh -displacement ‘X’. But the tota} Cnergy
wltE)-Of the vibrating system remaing constant
gd e i represented by the horizonta [j;e
(brown line).

76 FREE OSCILLATION

Consider a body or a system ¢
its mean position to its extreme
force, it starts oscillation with cers
and the corresponding period is called jts natural tim '
with its own natural frcque_ncy and it is free from al] ¢
then such oscillations of the body are called free oscillations.

For example, oscillations of a simple pendulum, vibrations of
uning fork, vibrations of string of musical instrument etc,

In free oscillations, the tot

conserved. As we are assuming
amplitude of the osc

ody with constant amplitude are shown in Fig.7.14.
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7.7 DAMPED OSCILLATION

In free oscillatior, we have studied that the total mechanical energy of the
oscillating body remains constant. But in practices, when a body is oscillating with
its natural frequency, the amplitude of the oscillation gradually decreases with time
and finally it comes to rest. This is due to the presence of resistive forces such as; air
resistance, friction etc. The oscillation with decreasing amplitude in the presence of

various - resistive - forces is called damped
oscillation and the resistive forces are called
damping. forces. Energy dissipates due to

negative work done by these damping forces -

and the body comes to rest in due course of
time.

The damping force depends upon the
speed of the oscillating body and is directed
opposite to the velocity. Graphically the

damped oscillation of the oscillating body is

shown in Fig. 7.15.

Now the damped oscillation can be
studied under the following three different
cases.

(i) - When the damping force is greater than the
oscillating force, the body does not
oscillate, i.e., without performing any
oscillation, the body quickly comes at rest
position. Such motion is called over-

damping; graphically the over damping of '

a body is shown in Fig. 7.16.

When the damping force is equal to the
oscillating force, then the motion of body is
called critical damping. In this case, the

(i)

body returns ‘to the equilibrium (mean)

position with uniform speed along a curved
path without performing oscillation as
shown in Fig. 7.17.

(iii)
- oscillating force then the body is set into
oscillation and is called under-dampmg
Graphically, the under-damping of a body
is shown in Fig. 7.18.
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Fig.7.16: Over damping by a body
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Fig.7.15: Damped oscillation of a body
with decreasing amplitude
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Fig.7.17: Critical damping of a body

Fig.7.18: Under damping of a body




Examples of dampmg devices , v u;cyligﬁcrm':ml:he; to frame
of automobile: relatively stationa
Shock absorber ey %z

In damped oscillation, a small fraction of
he energy of the oscillating system is dissipated
against the friction buF damping in some cases is
very useful. Qne _\V}dely used appllcation of
damped osci}latxon is in the suspension system of
an automobile. A shock absorber is attached to
ihe frame of the vehicle. |

A shock absorber is designed to use
Jamping forces, whiph reduce the vibrations
d with a bumpy ride.

As Fig.7.19 shows, a shock absorber
consists of a piston in a reservoir of viscous fluid
such as oil. When the piston moves up and down
in response to a bump on the road, the oil inside
the pressure tube is forced to go through piston
valve and the base valve to move into the
adjacent chamber. The holes in the valve control
the rate of oil flow. Viscous forces that arise

relate

during this movement cause the damping effc?ct. Lower cylinder attached to
The idea behind a shock absorber is to axle and wheel: moves up and down
case the natural bouncing motion of a spring. The Fig.7.19: Shock absorber

degree of damping of shock absorber is shown in
Fig.7.20. If the shocks are womn, and the
system becomes under damped motion,
then that wheel is going to be bouncing
down the road (red-line). If the shocks are
too aggressive, then it can create a situation
where it delays the time it takes for the tyre
to rebound to its position before the bump ,
(green ]ine). { N s’ Underdamped
At critical damping, the tyre will
rebound as quick]y as it can to the road’ Fig.7.20: Degree of damping of Shock absorber
without overshoot (blue line). In reality,
critical dampening does not occur rather it slightly turns under-damped for a more
comfortable ride. Typical automobile shock absorbers are designed to produce
underdamped motion somewhat like that red line.
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7.8 FORCED OSCILLATION AND RESONANCE

In damped osciflation, the oscillator cannot maintain its natural frequency for
long duration due to the resistive forces and the amplitude of the oscillation
decreases gradually with time. But we can maintain constant amplitude by applying
a penodxc external force which is called a driving force. Thus when lhc oscillating
body is subjected to a periodic dr1v1ng force - s
then such oscillation is called " forced : '
oscillation and its frequency is called driving
frequency. The' vibration of a vchicle caused
by the running of engine is an example of
forced vibration. In forced oscillation, the"
amplitude of the oscillation depends upon the
relation between the driving frequency and the
natural frequency of the body.

If the frequency of the driving force is
same as the natural frequency of the C
oscillating body, the amplitude of vibration is  Fig.7.21: A set of five simple pendulums of
very much increased. This phenomenon is different lengths suspended from a common
known as resonance and the oscillations of

large amplitude are called resonant oscillations.
To demonstrate the resonance phcnomenon we perform a sunplc experiment.

The experimental set up consists of two pair of pendulums A & B and C & D such
that the length of A and B is ¢, and length of Cand Dis 7,. All the pcndulums are

suspended by a horizontal rod as shown in Fig. 7.21.
Now we introduce another pendulum ‘P’ whose length can be varied i.e.

either ¢, or £,. Consider the case when the length of pendulum 'P' is equal to ¢,. If

the pendulum ‘P’ is set into vibration, this vibration reaches the other pendulums
through the rod. Then the pendulums A and B receive a driving force through the
rod and they also start vibration and its amplitude increases due to the resonance
“phenomenon because their lengths, natural frequency and natural periods are same.

At the same time the pendulums C and D whose natural frequencies are different
from natural frequency of ‘P’ do not oscillate i.e. they continue to remain at rest. If
the length of the pendulum ‘P’ is made equal to ¢, and allowed to vibrate, then the

pendulums C and D start vibration due to resonance while pendulum ‘A and B’

remain at rest.
The resonance phenomenon can further be explained by some examples
(i) The soldiers are advised to break their steps while crossing a bridge. If

the soldiers march in steps then it is possible that the frequency of their




j footsteps become equal to the natural frequency of the bridge and the
bridge may be set into vibrations with large amplitude due to the
resonance. |
‘ (i) During earthquake, when the frequency of earthquake is equal to the
,‘ : natural frequency of a building then the building will be set into
S vibrations with large amplitude due to the resonance and the building
.‘_ may collapse. |
. (iii) In communication system, all the transmitting signals can be received
| by receivers due to the resonance phenomenon when the frequency of
the receiver is made equal to the frequency of incoming signal. .
| : (iv) Microwave ovens generate super high frequency clectromagnetic waves
'\  (3GHz-30GHz and wavelength of about 12 cm) and scatter them
n throughout the oven. The frequency of microwave excites water
molecules into resonance and causes them to collide with one another.
Friction generated by the collisions changes the kinetic energy of the
water into heat that warms the food. Food containing water molecules
can only be heated by the microwave oven. ' .
(+) The amplitude of a swing can be increased by applying a suitable
periodic force on it.
(vi) The tuning of a radio set for a certain station is also based on resonance
'~ in its LC-circuit.

7.9 SHARPNESS OF RESONANCE

We have studied in the resonance phenomenon that the .amphfude of the ,
oscillation is maximum when the frequency of the driving force is nearly equal to
the natural frequency of the osciliating body. At
The amplitude can be decreased by changing
the frequency of driving force.

If the amplitude of oscillation increases
rapidly at a frequency 'f' slightly different that
from the resonant frequency 'f,, then the
resonance is said to be sharp. Amplitude of the
» resonance oscillation and its sharpness depend

.upon damping that is, smaller the damping,
greater will be the amplitude and more sharp
Wwill be the resonance. Similarly, for greater _ s
:‘ damping, the amplitude of the resonant _,'Q f 3
.- ‘Jpp>oscillation will be small and such resonance s 2 Gk paganey 2
called flat resonance. Fig.7.22 shows the Fig.7.22: Sharpness of resonance
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amplitude as a furction of the applied frequency of the driving force. We see that.
the amplitude is large if the damping is small. Also the resonance is sharp in this
case, that is the amplitude rapidly falls if ‘f* is different from ‘Ts.
In the absence of damping forces, the ' RIS
l amplitude of the oscillation (forced vibration)
will be infinity but practically it is impossible. |
In all real cases some damping is always present
in mechanical systems and the amplitude
remains finite.
~ However, the amplitude may become
very large if the damping is small and the
applied frequency is close to the natural
frequency.

; a . Fig. 7 23: Bt.foru resonance condmon
The resonance effect is very important in =~ Tacoma narrow bridge

the design of bridges and other civil engineering
projects. On July, 1940 the newly constructed
Tacoma Narrow Bridge (Washington) was
opened for traffic as shown in Fig.7.23. Only
four months -after this, a mild wind set up the
bridge in resonant vibrations. In a few hours the
amplitude became so large that the bridge could
not stand the stress and a part broke off and
went into the water below (Fig.7.24). After this
incident the engincers considered the resonance : - 3
phenomenon in the design and construction of  Fig7.24: AﬂLr resonance condition
long span bridgcs. Tacoma narrow bridge
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e  Oscillatory motion: To and fro motion of a body about its mean position i
called oscillatory motion. .

e Periodic motion: Motion that repeats itself in equat intervals of time.

e  Displacement: The distance of a vibrating body from its equilibrium position
to its present position.

e Simple Harmonic Motion: The motion of a body is said to be S.H.M. if it A
acteleration is directly proportional to the dlspDacement and is always directed 4
towards the mean position. i"}

e Vibration/Cycle: The complete round tﬂp of an oscnllatmg body is called\
vibration.
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Amplitude: The maximum displacement from mean position of an oscillating

object is called its amplitude.

Time Period: The time taken by the vibrating body to complete one vibration /
cycle.

Frequency: Number of vibrations in one second is called frequency.

Circular Motion related with SHM: The movement of projection of particle
moving in a circle is S.H.M.

Angular Frequency: The number of vibrations per unit time is called angular

frequency. _

Simple Pendulum: A simple pendulum consists of a solid bob suspended by a

string from a rigid support. Its to and fro motion about its mean position is

" S.H.M and its time period depends upon its length 1.e. T = 27t\/z.
g

Inter conversion of energy in SHM: When a body is executing S.H.M. then it
posscsses both K.E. and P.E. which are inter-convertible such that the total
energy remains constant.

Free Oscillations: The oscillation of a body in the absence of resistive force is
called free osciflation.

Forced oscillations: The oscillation which is driven by frequency of a periodic
force is known as forced oscillation.

Damped Oscillations: The oscillation of a body in a resistive medium with
decreasing amplitude is known as damped oscillation.

Over damped: When the damping force is greater than the oscﬂlatmg force
then it is called over damping.

Critical damping: When the damping force is equal to the oscillating force

then the motior of the body is called critical damping.

Under damping: When damping force is smaller than the oscillating force
then the motion of the body is called under-damping.

Natural time period and natural frequency: In the absence of resistive
forces, the time period and frequency of the oscillating body i$ called its
natural period and natural frequency.

Resonance: When a force is applied, whose frequency is equal to the natural
frequency of the system, the system vibrates at maximum amplitude and the
phenomenon is called resonance.
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10.

~ energy is maximum when its displacement is

| S!larpness of resonance: When the frequency of driving force is slightly
different from tl?e resonance frequency then the amplitude will be increased
and resonance will be sharp. Sharpness of resonance depends upon damping.

Multiple choice questions.

The acceleration of a body executing simple harmonic motion is;
(a) Zero at each point (b) Remain same at each point
(c) Maximum at mean position - (d) Minimum at extreme position
What is the value of a spring constant when a 100g mass is attached to a spring
and it is accelerated 0.5m s~ through a displacement of Scm?
(@0.INm' (b)0.5Nm" (c) INm" (d)SNm'
- Ifa spring of forced constant K is cut into two equal parts, then the spring .
constant of each halfis
K K
a) — b) 2K c)K —
O (b) OL G
When a body is performing S.H.M then at its extreme position.
(a) Displacement is zero (b) Amplitude is zero
(c) Velocity is a zero (d) P.E is zero

A particle is executing S.H.M along a straight line with amplitude A, its kinetic

1
3
!

(a) £A (b) i—g— (c) zero : (d) i% |
The time period of a body attached to a spring depends upon. '
(a) Amplitude (b) Mass
(c) Length (d) Displacement
When the length of the peadulum is increased four times then its time period is
increased. ' =
(a) One time {b) Two time (c) Three time (d) Four time
“What is the frequency of the body when its time period is 2 seconds? ' |
(@) 1 Hz (b)2Hz (c) 0.2 Hz (d) 0.5 Hz . k

A second’s pendutum is one who has a time period of
@) 1s b)2s - © —;-s (d)0.2's

In S.H.M.,, at what distance from mean position in terms of amplitude x,, K.E.
and P.E. both will have equal value?



11.

12.

- 13.

(=

14.

15.

16.

17.

What IS thc rolc ofthe lestormg force in the simple harmomc moﬂon"

(a) 9.51x, (b) 0.61x, (c) 0.71x, (d) 0.81x,

The instantaneous K.E of a mass attached to the end of an c]astic spring is:

@ Jkx2-x) () JkxITxD) (@ Fk-x) (@ Flx-x,)

“In S.H.M., we have the conscrvatioh of

(a) Kinetic energy . ~ (b) Potential energy

(c) Total energy (d) Mechanical energy

A free oscillation has constant

(a) Energy (b) Amplitude (¢) Frequency (d) All of these

Wher damping force is equal to the oscillating force then the damping is
called. :

(a) Under damping (b) Critical damping

(c) Over damping (d) No damping

A resonance occurs when driving frequency is

(a) Less than the natural frequency (b) Greater than natural frcquency
(c) Equal to the natural frequency (d) Equal to zero

in the absence of ‘damping force, when driving frequency is equal to the
oscillating frequency then the amplitude of the oscillation will become

(a) Zero (b) Minimum (c) Maximum (d) Infinity
Food is cooked in a microwave oven by the effect of:

(a) Interference (b) Mechanical resonance

(c) Magnctic resonance : (d) Electric resonance

“SHORT QUESTIONS

What are the two main conditions that must be met to produce simple
harmonic motion?

What is the relation of circular motion of body with simple harmonic motion?
What is the difference between the time periods of simple pendulum and a
body attached to a spring?

What is the difference between phase angle and phase constant?

When a body is performing S.H.M then at what condition, its total mechanical
energy is conserved and at what condition, its energy does not conserve?

Show that in S.H.M. the acceleration is zero when the velocity is maximum
and the velocity is zero when the acceleration is maximum.

In the simple harmonic motion of a mass attached to a spring, the velocity of
the mass is equal to zero when the acceleration has its maximum value. How is
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this possible? Can you think of other examples in which a body has zero
velocity with a nonzero acceleration?

9.  What is the difference between free and forced oscillation? ’
10. Give one practical example each of free and forced oscillations.
11. How natural time period of an oscillating body remains constant. e

12. Describe the three kinds of damping?
13. How docs sharpness of resonance occur?
14. How the amplitude of resonant oscillation affected by damping?

15. What happens to the time period of a simple pendulum if its length is
quadrupled?

COMPREHENSIVE QUESTIONS =

Define simple harmonic motion with all its characteristics such as; Vlbratlon
Instantancous displacement, Amplitude, Time period, Frequency and Angular.

2.  Show that if a particlc is moving along a circle, then its projection on the
diameter of the circle exceutes S.11.M.

3.  Prove that the motion of a mass attached to a spring is exccuting S.H.M.

4., Describe simple penduelum and prove that its time period depends upon its

length.
5,  Prove that when a body is pcrformm;, S.H.M, its total energy remains constant.
6. Compare frec and damped oscillations. Also discuss the three types of damped

oscitlations.
7. State and explain with examples the forced oscillation and resonance.

NUMERICAL PROBLEMS

1.  When a 600 g mass is suspended at the end of a vertical spring then the spring
stretches by 0.45 m. What is the spring constant of the spring, and how much
further will it be strctchud if an additional mass of 600 g is hung from it?

(13Nm™, 0.45 m)

A 2 kg mass attached to a spring is exccuting S.H.M. and makes 4 vibrations ..
per second. Calculate the acceleration and the restoring force actmg on the

body when its displacement from mean positionis 7cm. (44.2 m s, 88.4 N)
A particle pcrfonmng S.H. M of amplitude 8 cm. If its velocity while crossing
the mean position is4 ms ' what is its frequency and time period?
(8 Hz, 0. 125 sec)
4. What is the amplitude, frequency, period and position at t = 2s of a vibrating
body whose motion is represented by the equation x = 0.2cos 0.125nt? |

(0.2m, 0.0625 Hz, 165, 0.20 m)

!\)

»
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Calculate the fréquency of simple pendulum of length 0.8 m which is vibrating
on Mars, where weight of object is 0.40 times its weight on earth.  (0.35 Hz)
How much time period of a simple pendulum is increased by increasing its
length from 0.8 m to 0.993 m? (0.2 5)
A block of mass 5 kg is dropped from a height of 0.8 m on to a spring of spring

constant 1960 N m™'. Find the displacement through which the spring will be
compressed. | _ (0.2 m)

A car of mass 1300 kg is constructed using a frame supported by four springs.
Each spring has a spring constant 20000 N m™". If two pcop.lc riding in the car
have a combined mass of 160 kg, find the frequency of vibration qf the car
when it is driven over a pot-hole in the road. Assume the weight is evenly
disturbed. , (1.18 Hz)




