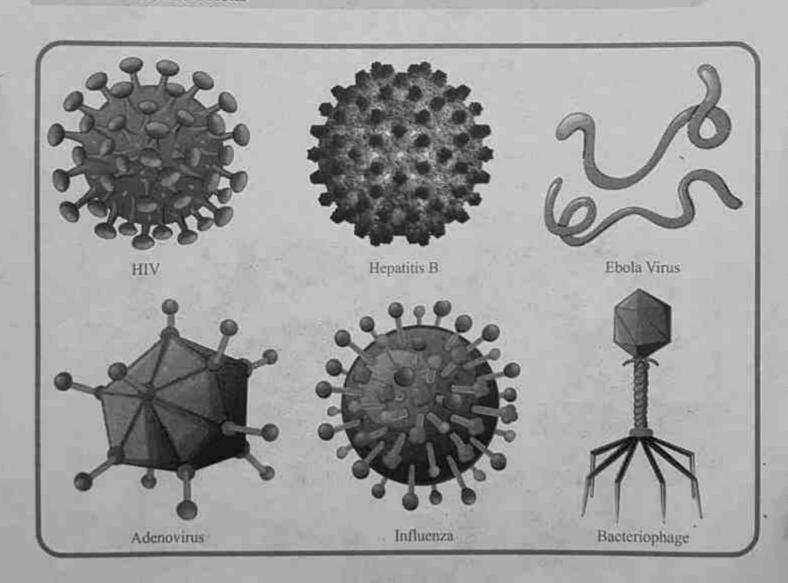
Section 02


BIODIVERSITY

ACELLULAR LIFE

Major Concepts

- 5.1 Viruses: Discovery and Structure
- 5.2 Life Cycle of Bacteriophage
- 5.3 Life Cycle of Human Immunodeficiency Virus (HIV)
- 5.4 Parasitic nature of Viruses
- 5.5 Viral Diseases
- 5.6 Viroids and Prions

Students Learning Outcomes

On completion of this unit students will be able to:

- Justify the status of viruses among living and non-living things.
- Trace the history of viruses since their discovery.
- Classify viruses on the basis of their hosts and structure.
- · Explain the structure of a model bacteriophage, flu virus and HIV.
- Justify why a virus needs a host cell to parasitize in order to complete its life cycle.
- Explain how a virus survives inside a host cell and protect itself from the host immune system.
- Determine the method a virus employs to survive/pass over unfavourable conditions when it does not have a host to complete the life cycle.
- Describe the Lytic and Lysogenic life cycles of a virus.
- · Outline the usage of bacteriophage in genetic engineering.
- · Explain the life cycle of HIV.
- Justify the name of virus, i.e., "Human Immunodeficiency Virus" by establishing Thelper cells as the basis of the immune system.
- · Reason out the specificity of HIV on host cells.
- · List the symptoms of AIDS.
- · Explain the opportunistic diseases that may attack an AIDS victim.
- Describe the treatments available for AIDS.
- . List some common control measures against the transmission of HIV.
- Describe the causative agent, symptoms, treatment and prevention of the following viral diseases: hepatitis, herpes, polio and leaf curl disease of cotton.
- · List the sources of transmission for each of the above-mentioned diseases.
- Assess from the given data the economic loss from viral infections (cotton leaf curl virus disease and bird flu virus) in Pakistan. Describe the structure of prions and viroids.

Introduction

The life form which exists without a cellular structure is known as **acellular** or non-cellular life. The primary candidates for non-cellular life are viruses. Majority of biologists consider viruses are non living because they are not capable of **autopoiesis** (ability of reproduction) without host. The other examples of acellular life are **viroids** which are smallest infectious agents consisting solely of short strands of circular single stranded RNA without protein coat. The **prions** are infectious agents composed entirely of protein, capable of multiplying itself and transferable from one host to another.

5.1 Viruses Discovery and Structure

A virus is a biological agent that reproduces only inside the cells of living host. Viruses can infect all type of life forms i.e., from animals and plants to microorganisms including bacteria.

In 1884 the French microbiologist Charles Chamberland made a filter paper for filtration of bacteria. In 1892, Russian biologist Ivanovsky used this filter to determine the cause of tobacco mosaic disease. In his experiment he proved that tobacco mosaic disease was not caused by bacteria but caused by other infectious agent which can pass through filter paper. He called these filterable viruses. His view was confirmed by American virologist W.M. Stanley in 1935, when he observed tobacco mosaic virus

In the early 20th century (1915, 1917) Twort and Herelle discovered under Electron Microscope. bacteriophages (viruses that infect bacteria). Since then thousands of species of viruses have been discovered and microbiologists speculate that there are millions of species of

viruses still to be discovered.

5.1.1 Viruses Living or Non Living

Viruses show the characteristics of both living and non-living things. The living characteristics of viruses include:

They have their own genetic material.

They undergo mutation.

Can reproduce inside host cell by using host metabolic machinery.

Get destroyed by ultraviolet radiations and chemicals.

Occur in different varieties or strains.

The non-living characteristics of viruses include:

They are non-cellular particles.

Generally lack enzymes and co-enzymes and depend upon host enzymes and coenzymes for their metabolic activities.

Can be crystallized and stored in laboratory.

Do not respire and use the energy of host for their activities.

Therefore, depending upon the ambivalent(fluctuating) nature of characteristics possessed by the Viruses; they are considered on boundary line between living and non living things.

5.1.2 Classification of Viruses

Viruses may be classified on the basis of morphology, type of host they infect, presence or absence of outer covering and types of nucleic acid.

Classification of viruses based upon structure (morphology):

On the basis of capsid: 1.

Some viruses have helical capsid such as tobacco mosaic virus (TMV).

Many have polyhedral capsid, contain a glycoprotein spike at each vertex, such as adenovirus.

Viruses possess an outer envelope studded with glycoprotein spike, such as Influenza viruses.

Viruses like bacteriophage possess complex capsid consisting of a polyhedral head and tail apparatus.

On the basis of genome (DNA and RNA):

Double stranded DNA viruses (dsDNA Viruses). e.g., Adenoviruses, Herpes viruses, Pox viruses.

Single stranded DNA viruses (ssDNA Viruses), e.g., Paroviruses (small viruses of vertebrates and invertebrates) cause rash.

Double stranded RNA viruses (dsRNA viruses),

e.g., Reoviruses, cause diarrhoea.

organism on earth. Single stranded RNA reverse transcribing viruses template for DNA (ssRNA-RT viruses), e.g., HIV (retrovirus).

Do you know?

Bacteriophages are ubiquitous viruses found wherever

bacteria exist. It is estimated

that number of Bacteriophages

is more than any other

Classification of viruses on the basis of host they infect:

Bacterophages attack bacteria.

Plant viruses which cause more than 2,000 types of plant diseases such as TMV,

Potato yellow dwarf virus.

Animals viruses cause many diseases to animals and human such as mouth and foot disease in livestock, papovavirus causes mumps and measles. Rous sarcoma virus causes cancer.

5.1.3 Structure of Model Viruses

A virus particle (virion) consists of nucleic acid core surrounded by a protective coat of protein called capsid. The nucleic acid found in viruses is either DNA or RNA but

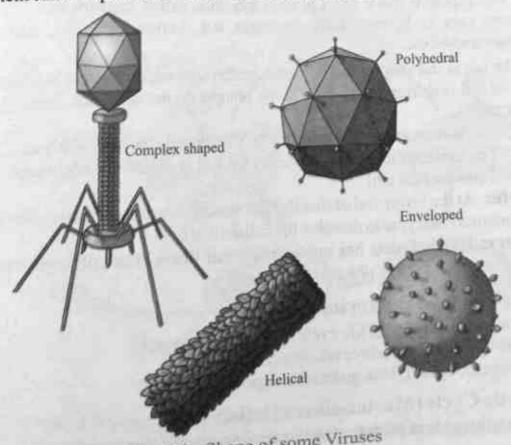
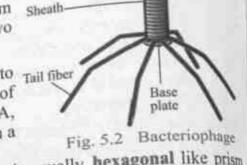


Fig. 5.1 Shape of some Viruses

not both. The capsid is made of many smaller, identical protein molecules called capsomerer. Their capsomeres. Their number and arrangement varies in different types of viruses. Some viruses have an envelope of lipid outside the protein coat. This envelope is derived from host cell and such host cell and such viruses which have envelope are called enveloped viruses. The viruses have different also have different shapes like enveloped, tadpole or complex shaped, polyhedral, spherical, helical etc.


Structure and life cycle of some viruses (Bacteriophages, flu virus and HIV):

VA05

5.1.4 Structure of Bacteriophage

A Bacteriophage is a virus that infects and replicates within a bacterium. They vary in size from 24 to 200 nm in length. A bacteriophage consists of two main parts, i.e., head and tail.

Head: The head (nucleocapsid) is further divided into Tail fiber two parts, inner core of nucleic acid and outer coat of protein. The nucleic acid may be mostly DNA, however, some have RNA. The number of genes in a bacteriophage genome vary from few to over 100.

Neck

Collar-

The protein coat or capsid of bacteriophage is usually hexagonal like prism shaped. The capsid is made up of protein sub units called capsomeres. The number of capsomeres vary in different bacteriophages, e.g., herpes virus 162, adenovirus 252

Tail: The tail is rod shaped and hollow tube through which nucleic acid passes in host The size of tail is different and even some phages do not have tail. The tail consists of

Neck: It is the narrow area of the tail without sheath and attached with head.

Sheath: The contractile protein covering on tail is called sheath, which pushes the

Base Plate: At the lower end of sheath a flat structure is present called end plate or basil plate. It contains lysozyme to dissolve the cell wall of host.

Tail Fibers: The end plate has one to many tail fibers. The tail fibers and base plate involve in the attachment of phage with host cell.

5.2 Life Cycle of Bacteriophage

There are two types of life cycle of bacteriophages.

- Lytic cycle (Master-slave relationship)
- Lysogenic cycle (Host-guest relationship) i)

Lytic Cycle (Master-slave relationship)

The lytic cycle of bacteriophage consists of following steps.

Attachment:

In first step, bacteriophage attaches to the cell wall of host that is bacterium at a specific site known as receptor site. The attachment occurs by tail fibers.

Penetration:

The tail of virion releases an enzyme known as lysozyme which dissolves a small portion of bacterial cell wall. Now the tail sheath contracts and injects DNA into the host cell. The protein coat of virus remains out side of the cell.

Multiplication of virion:

After entering host cell the virion DNA takes over the control of biosynthetic machinery of host cell and forces the host cell to synthesize necessary viral components, i.e., DNA and protein. In this way virus starts multiplying. After 25 minutes of initial infection about 200 new bacteriophages are found in bacterial cell.

Lysis:

In this final step the new daughter phages exert pressure on the bacterial cell wall and enzyme lysozyme also attacks the cell wall from the inner side. Eventually cell wall bursts and progeny of viruses are released. This process is called lysis of bacterium. Newly formed phages are now ready to attack new host to start the lytic cycle again.

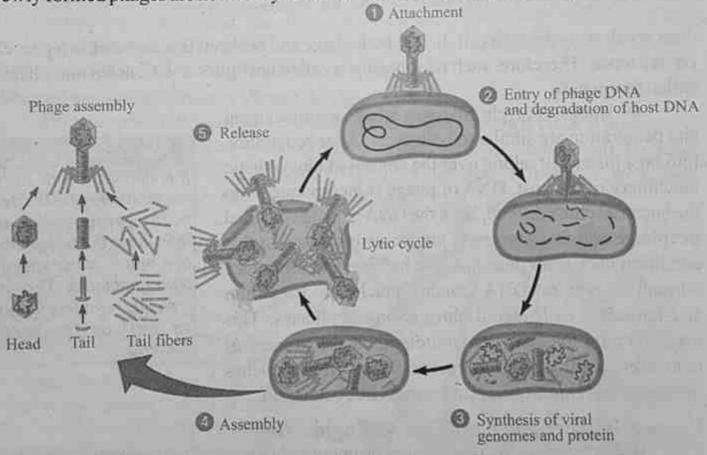
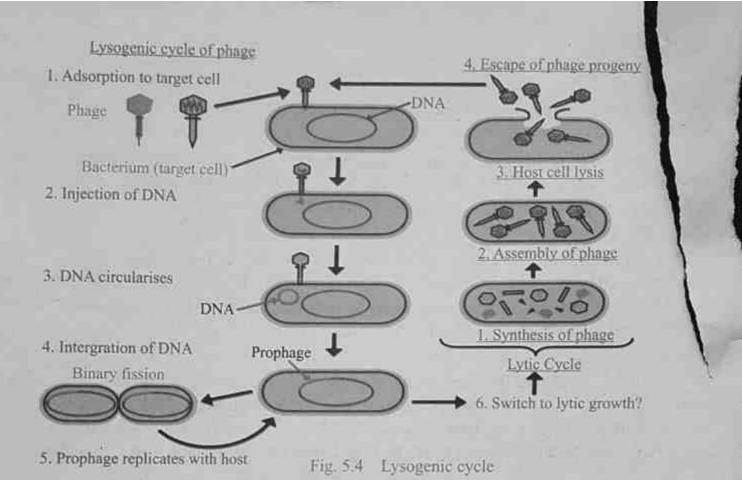



Fig. 5.3 Lytic cycle

5.2.2 Lysogenic Cycle: (Host-Guest Relationship)

All bacteriophages do not cause lysis of bacterium. In lysogenic cycle the phage

does not destroy the host cell. In fact both phage and host cell live together in a peaceful co-existence. Therefore, such relationship is called host-guest relationship and phage is called temperate.

In lysogenic cycle first two steps i.e., attachment and penetration are similar to lytic cycle. After penetration into host instead of taking over the control of biosynthetic machinery of the host, DNA of phage is incorporated into the bacterial chromosome. Now the DNA of phage is called **prophage** and this process is known as lysogeny. In this condition bacterium does not lyse but live and reproduce normally. The viral DNA remains attached to bacterium and replicates as bacterial chromosome replicates. This may continue for many generations until the process of induction takes place. In this process viral DNA detaches from bacterial chromosome and starts lytic cycle again.

Phage Therapy

It is the therapeutic use of bacteriophages to treat pathogenic bacterial infections. Bacteriophages are much more specific than antibiotics. They are typically harmless for host as well as for useful bacteria.

Usage of Bacteriophages in Genetic Engineering

Bacteriophages are used in genetic engineering as vectors alongwith plasmids. In genetics a vector is a DNA molecule use as a vehicle to artificially carrying foreign genetic material into another cell where it can be replicated and expressed.

The bacteriophage vector is called lambda and they are more efficient than

bacterial plasmid. The phage vector can carry larger fragments of DNA usually 15-50 base pairs.

The enzymes of viruses like holins and lysins are used to degrade the bacterial cell wall so bacteriophages have been proposed as alternative to antibiotics for many antibiotic resistant bacterial strains.

5.2.3 Influenza or Flu Virus

It is an RNA enveloped virus, belongs to family orthomyxoviruses. It includes seven genera but out of seven three genera usually cause influenza in humans and some other vertebrates. These three genera are influenza virus A, influenza virus B and influenza virus C. Each genus include only one species, i.e., influenza A, B and C virus.

The influenza A and C cause infection in different vertebrates including humans but influenza B almost exclusively infects human.

Vaccines and drugs are available for the treatment of influenza virus infection but flu viruses develop resistance against these vaccines and drugs. Therefore, vaccines and drugs have to be reformulated regularly.

Do you know?

The total genome length of flue virus is 12000-15000 mucleotides and the genome contains 6-8 segments or pieces of varying lengths.

Symptoms of influenza

include fever, shivering, dry cough, chill, loss of appetite, body-ache, nausea, irritation in throat and nose etc.

Human Immunodeficiency Virus (HIV):

Human immunodeficiency virus (HIV) is an RNA enveloped virus. It is spherical in shape. It is a retrovirus, i.e., it can convert its RNA into DNA in host cell. It causes aquired immunodeficiency syndrome (AIDS) in humans. It belongs to family retroviridae and genus lentivirus.

Structure of HIV:

It is roughly spherical in shape, about 120 nm in diameter. HIV consists of two strands of RNA enclosed by a conical capsid. The capsid is surrounded by an envelope.

The envelope is formed when the capsid buds off from host cell, taking some of the host cell membrane with it. The envelope contains glycoprotein receptors responsible for binding to and entering the host cell. Several enzymes like reverse transcriptase, protease and integrase are also present.

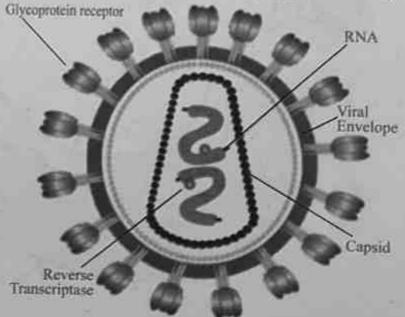


Fig. 5.5 Structure of HIV

C

a

b ij

HIV causes AIDS (Acquired immunodeficiency syndrome). The HIV was first Discovery of HIV identified in 1984 in France and USA. The name HIV (Human immune deficiency virus) was given to this virus in 1986. HIV attacks on some special type of white blood cells (macrophages, lymphocytes). These cells are known as T4 cells and are the primary hosts of HIV.

5.3.1 Life cycle of HIV (How does HIV recognize T4 cells?)

The HIV has glycoprotein receptors on its envelope while T4 cells have CD4(Cluster of differentiation) receptor, during travelling in blood HIV glycoprotein receptors stick with T4 cells on CD4 protein receptors.

Once HIV binds to a host cell, the viral envelope fuses with the cell membrane, the RNA and enzymes of virus enter into the host cell. Three types of enzymes of

Tit bits

HIV screening test is done by ELISA. However, ELISA ten is relatively less authentic, so PCR test is recomended which is more authentic.

HIV which come into host cell along with RNA are reverse transcriptase, integrase and protease. The reverse transcriptase converts viral RNA into DNA. The enzyme integrase then facilitates the delivery of this viral DNA into the host CD4

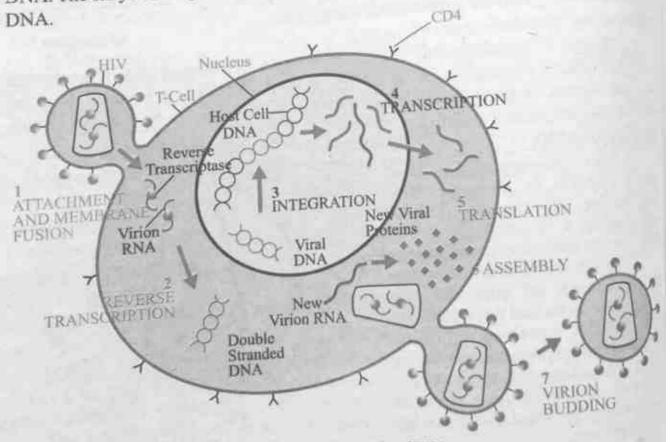


Fig. 5.6 Life cycle of HIV 130

The integrated DNA is now called provirus. Virus mRNA is transcribted in host cell by host cell polymerase. This mRNA is translated into proteins. These proteins are large in size which are then cleaved by the protease enzyme to form virion structural proteins. Thus immature virion is produced which is budded off from cell membrane. As it buds off, it takes the covering of host cell membrane and becomes mature infectious virion. A cell infected with

Tit bits

There are two species of HIV, i.e., HIV-I and HIV-II. HIV-I is most common pathogenic strain while HIV-II is not widely recognized outside Africa.

retrovirus does not necessarily lyse the cell when its replication takes place. In HIV infection T4 cells are destroyed thus immunity is decreased and patient becomes susceptible to other diseases. As it causes immune system deficiency so it was called HIV (Human Immunodeficiency virus).

Symptoms of AIDS:

The infection of HIV may be divided into three stages. The first stage is known as primary infection. In this stage symptoms like fever, swollen lymph nodes, inflammation of throat, night sweating occur. However, these symptoms disappear after some days and there are no symptoms for about nine months, therefore, this first stage is called asymptomatic carrier.

The second stage known as AIDS related complex. In this stage some of early symptoms of acute infection reappear like swollen lymph nodes under the armpit, neck region, groin region, fever, aches etc. Some other symptoms like persistent cough, persistent diarrhoea, flu, night sweating, loss of memory, loss of judgment and depression, weakness etc. This stage may continue from few months to many years.

The last stage of HIV infection is called full blown AIDS. This stage is characterized by severe weight loss, weakness and opportunistic infections such as kaposi's sarcoma (skin cancer), cervical cancer and cancer of lymphatic system.

Opportunistic infections are such infections which are caused by very weak pathogens which usually never cause infection as our immune system can easily destroy them.

Transmission of AIDS:

The HIV is transmitted by three main routes i.e., sexual contact, body fluids and mother to child.

The sexual contact is most frequent cause of HIV transmission. The second most common mode of HIV transmission is body fluid, it includes blood transfusion, agrical instruments, contaminated syringes, razors, blades etc. The mother to child transmission may occur during pregnancy, during delivery or breast feeding.

Prevention of AIDS:

There is currently no cure or vaccine to prevent or cure HIV infection. A treatment

Red Ribbon

The red ribbon is a symbol for solidarity with AIDS patients.

World AIDS Day

Ist December is world AIDS Day, it is being observed every year since 1988. It is dedicated to raising awareness about AIDS prevention. known as highly active antiretroviral therapy (HAART) is given but no significant improvement is observed. Therefore, prevention is the only cure for AIDS. The following preventive measures are recommended to avoid HIV infection.

Avoid immoral sexual contacts and follow Islamic teachings in order to live clean

and healthy life.

Surgical instruments must be sterilized before use. ii)

Disposable syringes should be used. Blood must be screened before transfusion. HII)

Do not share razor blades and tooth brushes. (V)

HIV positive mothers should avoid breast feeding. V)

5.4 Parasitic Nature of Viruses

Viruses are obligate parasites i.e., they cannot reproduce and live outside living cells. It is because viruses lack metabolic enzymes, ribosomes, mitochondria etc for making protein and energy. Therefore, viruses must need a host cell for their life cycle.

Viruses are highly specific with respect to their hosts, e.g., HIV attacks on T4 cells of human. Polio virus infects spinal nerve cells. Hepatitis virus attacks on liver cells, Bacteriophages attack only bacteria etc. However, some viruses have a broad range of

specificity e.g., rabies virus can infect all mammalian cells.

When any foreign agent enters inside the body it is destroyed or killed by macrophages and neutrophils or antibodies produced by Bursa lymphocytes. But in some capsule, protein and fibrin do not bind by geg (swing) like substances secreted by Bursa lymphocytes which are used by macrophages and neutrophils. That is why viruses are saved from being phagocytized. Some viruses cover with host proteins, therefore, body immune system is unable to detect them as foreign body and they remain protected. Many viruses continuously change their shape and appearance as a result body immune system and vaccine becomes ineffective against new types, e.g., influenza and HIV viruses also remain safe in the body when immune system gets weak as in AIDS.

How viruses tolerate unfavorable conditions outside host cell?

Outside the host cell viruses are changed into crystals. In crystal form they are lawer seen dead and show no activities. Upon reaching the host cell, i.e., in favorable condition sknow they become active again and start reproducing by using host enzymes and proteins. The solid crystals of viruses may be present in saliva, respiratory droplets, feces etc.

A disease caused by virus is known as viral disease. Viruses cause number of ded by 5.5 diseases in plants, animals and human beings. A brief introduction of some viral diseases, ding Somye is given below.

Hepatitis is the inflammation of liver (Gk. Hepa = Liver, itis = inflammation) Hepatitis:

a death.

Ы 115

H

ore

dist.

Hes

sing

rimi:

such.

Herr

cause

Iduos

white i both, li

Itis

There are different causes of hepatitis such as alcohol, drugs and toxins. However, hepatitis is mostly caused by viral infections. There are several types of viral hepatitis like A, B, C, D and E.

Hepatitis A: It is caused by RNA virus called HAV. The HAV is non-enveloped icosahedral shaped virus which cause a mild, short term disease. It is transmitted by contact with feces from infected person and drinking sewage contaminated water.

Vaccine is available for the prevention of HAV but no antiviral therapy is

available.

Hepatitis B: Serum Hepatitis: It is caused by DNA enveloped virus called HBV. It is transmitted by blood, sexual contact, contaminated blood transfusion and by infected mothers to their babies, saliva etc. It may cause liver cirrhosis and death if not treated timely. The vaccine for HBV is available. Alpha interferon and some nucleoside analogues are effective treatment for HBV.

Hepatitis C: It is caused by RNA enveloped virus called HCV. It is a chronic and fatal disease, may cause cirrhosis, hepatocellular carcinoma and death if left untreated. The mode of transmission is via blood, sexual contact, breast feeding, sharing needles, tooth brushes etc. No vaccine is available for HCV, however, antiviral therapy is available usually a combination of interferon and ribavirin is given to the patients.

Hepatitis D: It is caused by HDV also called delta virus. This virus is only active in the presence of HBV, so it can be treated or prevented by treating HBV. Its mode of

transmission is also same as HBV. It is small spherical enveloped viroid.

Hepatitis E: It is caused by HEV. It is non-enveloped single stranded RNA virus. The symptoms of HEV are similar to HAV. But it can be more fulminant in some cases such as pregnancy. No vaccine or antiviral drugs available.

Herpes: There are two types of herpes viruses which cause herpes, i.e., herpes simplex virus I and II. These are double stranded DNA viruses having large genome covered with protein coat and envelope. Herpes simplex-I is known as cold sore while herpes simplex-II is known as genital herpes. Herpes-I is transmitted by saliva while herpes-II is transmitted by sexual contact. The symptoms include water blisters in the skin or mucous membranes of mouth, lips, nose, genitals and skin lesions. Herpes can be treated by using antiviral drugs and may be prevented by avoiding sexual contacts and physical contacts with infected persons.

Tit bits

Polio virus is assually spread by infected fecal matter entering the mouth. It may also spread by food and water contaminated by faces or salina.

Tit bits

Polio has been almost eradicated from world. However, Pakistan, Afghanistan and Nigeria are the countries where polio cases are identified.

Poliomyelitis (infantile paralysis)

It is highly infectious viral disease that can lead to paralysis, breathing problem or even death. This virus was first identified by Karl Landsteiner in 1908. Primarily, it is

transmitted by contaminated water of infected fecal material but may also be transmitted transmitted by contaminated water of infected fecal material but may also be transmitted transmitted by contaminated water of infected fecal material but may also be transmitted. transmitted by contaminated water of infected recar symptoms of polio. These symptoms by sneezing and coughing. There are many different symptoms e divided in two types.

Non-paralytic polio symptoms: These include flu, weakness, fever, sore through the policy in the second tenderness etc. may be divided in two types.

headaches, vomiting, fatigue, muscle tenderness etc.

Paralytic polio symptoms: These include loss of muscle reflexes, severe muscle pain spasm and damage to

There is no cure for polio, however, it can be motor nerve etc. prevented by vaccination. Two types of polio vaccines are available, i.e., inactivated polio vaccine (IPV) and oral polio vaccine (OPV).

Tit bits

Prions have differen structure than normal proba of body. Therefore, the on resistant to protease enzing

Leaf Curl Virus Disease

Leaf curl is a plant disease characterized by curling of leaves, darken veins Leaf curl is a plant disease characters the cotton plant which is one of the veins swellings. The disease mainly affects the cotton plant which is one of the veins swellings. veins swellings. The disease mainly affect over 60% of foreign exchange earnings important crop of Pakistan, accounting for over 60% of foreign exchange earnings.

In Pakistan this disease was first reported in Punjab region near the city of Multan in 1985. Now it is spread in other parts of Pakistan and the neighbouring countries. It is a main threat to cotton crop. It is caused by a cotton leaf germinivirus (CLCuV). The vector of this virus is whitefly Bemisia tabaci. Therefore, this disease can be prevented by protecting the cotton seedlings from the attack of whiteflies. The infected plants should be burnt and healthy seeds should be used for sowing.

Bird Flu in Pakistan

Bird flu is also called avian influenza. It is a viral infection that can infect not only birds but also humans and other animals. However, most forms of virus are restricted to birds.

H₅N₁ is the most common form of bird flu. It is deadly disease of birds and it can also easily affect humans and other animals that come in contact with infected birds. H₅N₁ are capable to survive for long

Fig. 5.7. Cotton Leaf Curl Disease

Fig. 5.8 Birds infected from birds flu virus

period of time. The infected birds continuously release the virus in their faeces and saliva, so touching the contaminated surfaces may spread the infection.

The symptoms of bird flu include cough, diarrhea, fever, headache, runny nose,

sore throat etc.

Multiple poultry outbreaks of H₃N₁ influenza have been reported in Pakistan, majority of outbreaks have been reported in poultry belt of Khyber Pakhtunkhwa province, particularly in Abbottabad and Mansehra. Some cases of bird flu have also been reported in Islamabad.

In Pakistan poultry sector is playing an important role in bridging the gap between the demand and supply of dietary protein. Pakistan to some extent, has remained successful in controlling infections of avian influenza. However, further steps are needed

to prevent the outbreaks of bird flu in Pakistan.

Activity

Relate enzyme activity with antibiotics by searching internet and find out the reason why antibiotics are not effective against viruses.

5.6 Prions

Prions are proteinaceous infectious particles which cause transmissible neurodegenerative disease. Stanely in 1982 discovered these particles. The prions affect the nervous system of human and other mammals.

The transmission of prion is mainly by unhygienic way of feeding, contaminated food. Some prions diseases of human are creutzfeld Jacob disease (CJD), kuru, fatal familial insomnia (FFI). These diseases are caused by eating beef products obtained from cattle with prions diseases. Scrapie is a common disease of bovine caused by prion. It is also known as mad cow disease. Loss of memory, paralysis, destruction of nerve tissues are symptoms of prion disease. No effective treatment is available and illness is progressive and always fatal.

Viroids

Viroids are single molecules of circular RNA without a protein coat or envelope so they are called simple RNA. These are smaller in size than virus, ranging from 246-270 nucleotides.

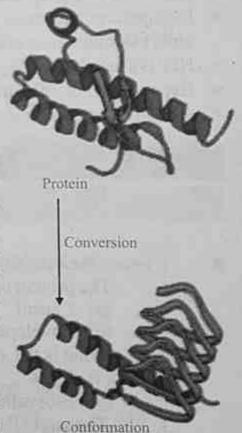


Fig. 5.9 Structure of Prion

Viroid was first discovered by T. O. Diener in 1971. Viroids cause diseases in plants such as potato spindle tuber disease, cucumber pale fruit.

The mechanism of viroids replication is unclear so far.

SUMMARY

- Viruses are sub-microscopic, obligate intracellular parasites.
- All viruses have a protein capsid or shell, that surrounds the nucleic acid in the central
 core, and collectively known as the nucleocapsid.
- The capsid of any virus is constructed from a number of identical protein subunits called capsomeres.
- Some proteins form a binding layer between the envelope and capsid of the virus, and glycoproteins (proteins bound to a carbohydrate) remain exposed on the outside of the envelope. These protruding molecules, called spikes or peplomers, are essential for the attachment of viruses to the next host cell.
- Bacteriophage means to eat bacteria, and are called so because virulent bacteriophage can cause the complete lysis of a susceptible bacterial culture.
- Lytic or virulent phages are phages, which multiply in bacteria and kill the cell by lysis at the end of the life cycle.
- Lysogenic or temperate phages are those that can either multiply via the lytic cycle or enter a dormant state in the cell.
- HIV is a member of the group of viruses known as retroviruses.
- Hepatitis means inflammation of the liver.
- A highly contagious disease is caused by the herpes simplex virus, either type I or II.

EXERCISE

Section I: Objective Questions

Multiple Choice Questions

A.	Choose	the	best	correct	answer
	~ 110000	Parent.	MANAGES.	TOTAL CET	MARKS MIN

- The protein coat of a virus is called the:
 (a) Capsid
 (b) Capsomere
 (c) Envelope
 (d) Viral membrane
- What is the second step of bacteriophage infection
 (a) Lysis
 (b) Attachment
- (c) Biosynthesis (d) Penetration
- The viral DNA incorporated into a lysogenic cycle is called.
 - (a) Prophage (b) Latent phage (c) Bacteriophage (d) Oncogenic virus Prions cause disease by
- 4. Prions cause disease by

 (a) Altering normal proteins
 (b) Altering genes
 (c) Activity of a reverse transcriptase
 (d) Produce poison

	What type of infectious agent causes potato spindle tuber diseas						
		(a) Prion	(b) Virino				
		(c) Viroid	(d) Virus				
	6.	6. Prion diseases can be acquired in all of the following ways except by					
		(a) Transplantation	(b) Inherited				
		(c) Direct contact	(d) Ingestion				
	7.						
		viruses are					
		(a) Caspid	(b) Capsomeres				
		(c) Envelope	(d) Spikes				
В.	Fill in the blanks.						
	Prions are infectious particles which are composed of only						
	2.		single molecule of circular without				
		protein coat.					
	3.	Polio virus is transmited by	the .				
	4. Master-slave relationship of bacteriophage is called cycle						
Host-guest relationship of bacteriophage is called							
	6.	The tail of phage secretes ar					
	7.	HEV is non enveloped sing					
	2013	Section II:	Short Questions.				
Writ	te shor	t answers.					
1.	Wha	What is meant by an obligate intracellular parasite?					
2.		What is the capsid?					
3.	What is an enveloped virus, and how does the envelope arise?						
4.	Write short note on prion.						
	Define bacteriophages and explain their structure.						
5.	What is necessary for adsorption?						
6.							
7.	What is a prophage or temperate phage?						
8.	What is the principal effect of the agent of Creutzfeldt-Jakob disease?						
9.		Vhat are viroids?					
10.	Why	the viral diseases are more dif	ficult to treat than bacterial diseases?				
	4	Section III: E	xtensive Questions.				
1.	Expl	ain the lytic phase of life cycle	of bacteriophage.				

What is HIV? Which disease it causes and how it is transmitted?

2.

- Write a note on different infectious diseases caused by viruses.
- Describe several types of hepatitis.
- Write note on prions and viroids.
- 6. Explain parasitic nature of viruses.
- Explain differences between lytic and lysogenic cycle.