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Complex Numbers

INTRODUCTION

Complex numbers are an extengion of the real numbers degigned to solve equations
that have no solutions within the realm of real numbers, The history of mathematics
shows that man has been developing and enlarging his concept of number according
to the saying that “Necessity is the mother of invention”. In the remote past they started
with the set of counting numbers and invented, by stages, the negative numbers,
rational mumbers, irrational numbers etc. Since square of a positive as well as negative
number i a posifive number, the square root of a negative number does not exist in the
realm of real numbers. Therefore, square roots of negative numbers were given no
attention for centuries together, However, recently, properties of numbers involving
square roots of negative numbers have also been discussed in detail and such numbers
have been found useful and have been applied in many branches of pure, applied,
financial and computational mathematics.

1.1 Complex Numbers
The numbers of the form z=a +ib ,where a,be R and i=\f—_1, are called complex

nambers. For example, 3 + 4_#,--,?.—2 1, —7—2i etc. are complex mumbers and the set of
all complex mumbers is denmaed by C.

1.1.1 Recognition vl Real and Imaginary Parts
Let us start with considering the following equation:

%% +1 =ﬂ = r’=-1 = x=:|:\{—_l :
71 does ot belong to the set of real mumbers. We, | rumses with 0 s it Insgiary

therefore, for convenience call it imaginary number | part.

and denote it by i {read as iota).

In the complex rumber z=a+ib, 4 is called real part and b is called imaginary part

of the complex number, For convenient, real part i8 denoted by Re z and imaginary part

by Im z of a complex number z. For example, if z= 3 + 44, then
Rez=3andImz=4.

The product of a non-zero real number and 7 is also an imaginary number.

For example, 2;:‘,—3:‘,4'5:',—1—21:'51'3 all imaginary numbers.
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Conjugate of Complex Numbers: Let z = a+ibbe a complex mumber, then a — ib is
called the complex conjugate of @ + ib. It is denoted by z . Thus § — 4 is complex
conjugate of 5 + 44 and -2 —3; iz complex
conjugate of -2 + 3i T A read rumber is seif-conjugate. |
1.1.2 Operations on Complex Numbers
With a view to develop algebra of complex nambers, we state a few definitions,
The symhols a, b, ¢, d, k, where used, represent real numbers.
(i) Addition: (a+ib)+{c+id)=(a+c)+ib+d)
(i) K(a+ib)=ka+ikb
(1ii) Subtraction: (@+ib)—(c+id) = (a+ib)+[{c+id)] i
=g +ib+(—e—id) =(a—e)+i{(b—d)
(iv) Multiplication: (g + ibMc + id ) =ac + iad + ibe+ i*bd = (ac — bd) + i(ad + bc)
1.1.3 Complex Numbers as Ordered Paire'of Real Numbers
We can define complex numbers also by using ordered pairs.
Let C be the set of ordered pairs belonging to B x R which are subject to the
following properties:
@ @d)=(c,d)Sa=cab=d
(@) (ad)+{c,d)=(atc,b+d)
(i) {(a, b)(c, d) = (ac— bd,ad -+ bc)
(iv) If&is any real number, then &(a,b)= (ka,&b)
Then C is called the set of complex nmmbers. It is casy to sec that
(a,b)—(c,d)=(a—c,b-d)
Properties (i), (ii) and (iii) respectively define equality, sum and product of two
complex numbers. Property (iv) defines the product of a real number and a complex
number,
Find the sum, difference and product of the complex numbers (8, 9) and
(3.-6)
FRTIT Sum = (8+ 5,9 - 6) =(13,3)
Difference = (8 —5,9— (- 6)) =3, 15)
Product = (8-5 -%-6), B(-6) + 9-5)
= (40 + 54, -48 +45) = (94, -3)
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1.1.4 Pmperties of the Fundamental Operations on Complex Numbers
It can be easily verified that the set C satisfies all the field axioms i.¢., it possesses the

properties of real numbers,

By way of explanation of soms points we observe as follows:

(i) The additive identity in s (0, 0).

(ii) Evety complex number (a, b) has the additive inverse (—a, ) i.e.,

(@ B)+ (= -5)=(0,0)
{iii) The mmltiplicative identity is (1, 0) L.e.,
(@ 5¥(1,0)=(a1-50,b1+al)=(a, b)
=(1,0)}(s b)
(iv) Every non-zero complex number {i.e., mumber
not equal to (0,0)} has a multiplicative inverse.
The multiplicative inverse of (a, b) is

e
a+b ' a® +b

b

The set C of complex
mmhm&ae&nhfsahsfyﬂm
order exioms, In fact, there
'mmmfﬁlsaymgﬂmtunﬁ
complex mumber is greater

or less than the other. )

0.8) 2 ) = (1,0, e ity slemens

()

) (@ b) (e d) t{e.f)]=(a,b)c;d) *(a, E)e.f)

[T 2] IF 2 =(4, 2) and 2, =(3,~1), then find -,
2

Given zl—(d- 2), z,=(3,-1)
{4,2) 442
(3 1) 3—i

Now,

Multiply the-:mmamtur and denominator by the complex canjugate of z, =3-1.

z _4+2 4+2: 3+i

z, 3-i 313+:

_ () (AN + D3+ (2D 12+ 48 +6i+ %7
- @GP -G T 9-p
12410 -2 104104 . i
= = =1+i i‘==1
9-(-1) 10

Thus, 2 =1+
Z,
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1.1.5 Argand Diagram
Every complex number 15 represented by one and only one point of the coordinate plane and
every point of the plane represents one and only one complex mumber. The components of

the complex mumber are be the coordinates of the point A5
representing it. In this represeniation the x-axis is called 4T

the real axis and the y-axis is called the imaginary axig. E(_sz"‘ 40,2
The coordinate plane itself is called the complex plane 24 .

or z — plane, The figure representing one or tore 14

complex numbers on the complex plane is called an fm—i—n—}—n
Argend diagram, The Argend diagram is & way of R
representing one or more complex mumbers on the qz,'_z')_i"" .
complex plane. Points on the x-axis represent real TAeY 54 P
mumbers whereas the points on the i

i) ' points y-ex15 represernt _4.-)" @

In an Argand diagram, the complex mumber x+iy isuniquely represented by the order
pair (x, ¥). In Figure (i), the complex numbers 3 +21, -2+ 2/, -3 —2iand 2 — 2i
correspond to the order pairs (3, 2), (-2, 2), (_.—'3, ~2) and (2, —2) respectively have been
represented geometrically by the point A, 8, Cand D. o
Moduolus of a8 Complexr Number: The real number s
¥+ 37 is called the moduls of the complex mumber é“
x+iy and it is denoted by |x-+iy|. In Figure (i), |a| = :
represents the modulus of £+iy . In other words, the o = M
modulus of a complex tumber is the distance fiom the

(12
Example Kl S Al

—1
Lo (42) 1+4i404? 3448 240 —6-3i+8i+4i’

Az y)

¥

then evaluate [z| v Hgemedh

Solution

Z—3 2-3 2—i 24§ 22—
_ —6+35i-4 -10+5i
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and  |z/=|-2-1 =-\/(—2)2 +(-1)" =a+1

= |7=+5
P EXERCISE 1.1 _d

1. Find the multiplicative inverse of each of the following complex numbers:
® 47 @) 2,5 @ (.0
2. Separsie into real and imaginary paris (write as a simple complex gumber):
. 2-Ti o {=2+38 L (4+30)°
O s ® 5 ) 4-3i
3. Provethat z=z iff z is real.
4. For ze C, show that:

TS "_"Zﬁ*)

1+1 =

O Hi-e(r) @ r-mm(a) @) | xz

5. 16 5,=2+i,2,=3— 2z, =1+3, thétzpress 2 in the form of a-+ib.

23
6. 1f z=2+T7iand z,=-5+3i, thien evaluate the following:
® P2z-4z @ Pa+2z @) F75+2 @) [(@+n)
7. Show that: !+ P34+ P +4 =0 forallpe N.

8. Find the loast positive value of n, if ('i] =

1-i
9. Show thht,ﬂm value of ©* for n € Nand n> 4 is i, where 7 is the remainder when
n is diviged by 4.

1.2 Egquality of Two Complex Numbers
The two complex numbers z, =a+ 5 and z, =c+df are said to be equal iff their real
and imaginary parts are equal i.e., a+bi =c+di & a=candb=4d.
[T 4| I (3+ 28)(x+#)=5+12i , where x, ye R, then find the values of x and y.
UL Giventhat (3+2)(x+iy) =5+12i

=  3x+3iy2ix+ 2%y =5+12i

= (-2 +(2x+3)i=5+12%




Ix—2y=35 (i
2x+3y=12 (ii)
Multiply equation (i) by 3 and equation (i1) by 2, we have
Ix— Gy =15
4x+6y=24
Add the equations
Ix—6Gy+4Ax+6y=15+24
13x =39
x=3
Substitute x =3 in equation (i), we have
3(3)—2y=5
Q—2y=5
=2y =—4
yp=2
Thusx=3,y=2
1.2.1 Square Root of a Complex Number
The square root of a complex mumber is another complex number that, when squared,
pives the original complex mimber.
Let w= p+igis a square root of & complex number z=x+iy, where p,q,x,yeR,
then w=+/z ...(3), taking square on both sides, we get
w =z
(p+ig) =x+1iy
PHpgi~gxtiy
Equating real and imaginary parts, we have
x=p-¢ (i)

y=2pg (iii)
Wekaow that (72 + £ = (oA~ F + 4P
Substitute x = p® —g*, y =2pq in the sbove equation, we get
(P +@y=x+y
= P+r@=J+y (iv)
From equations (i) and (iv), we have x= p* —g*and p*+¢* ={x*+3* . Solving for
the values p and q, we have

N e N
2 2
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From equation (iii): y=2pg, we have

o« y>0,if pand g have the same sign
» y<0,ifpand g have opposite signs
w y=0,ifp=00rg=0
Therefore, the square root of the complex number z=x+{y is given by

Vz= x+iy=:|:[,|’£x2+y:+"‘ ‘iy‘ Nty —x J
' 2 y 2

or Jz= i[,}"” ﬁ lo]—= ]--(v}.wherez|= ¥ +y* 208 modulus of z

Equation (v} is the required formmla for square root of the complex mumber x + iy

Find the square root of complex
number 5 + 12§ and also represent the square

root on an Argand diagram.

EEITTTON, Let x+ 38 =5+12
= x=Sandy=12>0

2| =|5+124|= 57 +122 =13,

Applymg the square root formula for complex =5
numbers, w2 get ® . 2P

=
g - i( {13+5 |11:,; 3= s) )
=(+9 +iJ3 )=£(3+24)

'Ihus,thesqufnm:botufﬂmmmplexnumbers+ 12i are 3 + 2é and —3 — 2 a& shown

- P EXERCISE 1.2

1. Find the real values of x and y in each of the following:
D) x+ip+2-A=i(5-D(3+4)

(i (x+iy){l—vj={2—3:)(—5+5t)(—i%)

¥y

3+2i
0

(S = B T
1 3 3 H It
L | 1 ]

F Y.

L

Y
—+—_4+Sl
(i) 24§ 3-i
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X lfz.——13+zﬂz and z, = x+ yi, find the real values of x and y such that
z — 2z, ==27 +15i

3. Find the real values of x and y ift

@ (x+ip) =25+60i (i) (x+ip) =64+480 (i) (x+iy) = 2;:’

4. 1If z=2+3i and 2z, =1—a, find the real value of ¢z such that In(z,z,)=7.
Ifz, =x+yiand z, =a + bi, find x, y, 2 and b such that z, +z, = 10+ 4i and
z, =% =612 ;
6. Showthat ¥z,2,€C,z2z =2z,
Find the square root of the following complex numbers:
i) —7-24 @iy 8—6 () -15-36f . (iv) 119+ 120
8. Find the square root of 13- 20:/3i and represent iFom an Argand dipgram.,
9. Find the real values of x and y if (=7 +i}e&dA+(—1-5)=i(11-i)
10. Find the real values of x and y if (5— 2} i)+ 3=4(11-1)—4

11. Find fhe real values ofy and v if @2 Y > 44
_2-!-: 2—1i

12. If z,=4+5] and z, = —2j, Fioll the real values of @ such that Re(z,z,) =20,

1.3 Complex Polynomials as a Product of Linear Factors
A complex pnlynomnli‘(x)ls a pohynomial function of the complex variable z with
complex coefficients. It 1s expressed in the general form as:

P(z)=az +a, z"" +..+az+a,
where a,.a,,...,4,,0, are complex numbers (2,#0), and 720 is sn integer
representing the degree of the polynomial,
For examples B(z)=(1-0z + 3i, BE@) =0 -4 + 2 + Hz + (3 - 4)and
B{z)=(2-Dz’+22% +(5+3i) are the examples of linear, quadratic and cubic
complex polynomials respectively. If » = 0, then P(z) becomes a constant polynomial.
A fundamental property of complex polynomials is that they can always be factored
into & product of linear factors.
According to the Fundamental theorem of algebra, a polynomial of degree 21 has
exactly » roots in complex nymber system C,
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Amﬂnrymthmﬂlmmsmtmﬂmtmypnlynomlﬂl’(z)nfdsgmeucanbefachned
completely into a constant ¢ and # linear factor over C in the form

P(Z)=a(z—zXz—z,).(z—z,) (1)
where z,, 2,,...,2, are¢ complex roots of the polynomial exuation P(z)= 0. Once we know
the roots of a polynomial equation F(z) = 0 we can apply equation (1) to factored the
polynomial P(z) into » linear factors. Specifically, if z and z, are roots of the
polynomial equation F(z) = 0, then the equation must be P{z)=(z—z Xz—2z,). For
examples, the polynomial P(x)=x"+4 consists of real cocfficient has no real roots, so
it cannot be factored into linear polynomials with real coefficients, However, if we
considered the polynomial P(z)=z*+4 as a complex polynomial, we can easily be
factored into two linear factors as:

22 +4=(z+2)(z—2)

where 2i and —2i are the complex roots of 2% +4=0

mﬁﬂz)mammﬂﬁmmmamnfzﬂntMP(z} ﬂmml]nd.ﬂnm]
of the fimnction P(z) and roots of the polynomisl equation P(z)= 0,
Factorize the polynomial P(z) =22+ (i — 3)z— 3i.
P(z}=z-"+(i—3)z—3:'

=2+zi—3z-3i

=2z +1)—-3@E+i)

=(z+i}z-3)
[FTTTI 7] Pactorize the polynomial P(z) =22 — 4iz+ 12,
EIEIN, P(z) =2 —4iz 12

— 2 = diz=(-12)

=7 —diz— 12 v P=—1

=22 —6iz + 2z — £12

=2(z— 6i) + 2i(z —6i)

=(z— 6}z + 21}
[FTTTIT 8| Factorize the polynomial Az)=2"+ (1 +i ) +iz.
T, PE) =2 +(1 + 2 +i

=z +({1+z+i]

=zZ+z+iz+i]

=zlz{z + 1) +i(z + 1)]

=zl(z + 1)z + ]

=p(z+ 1)z +i)
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polynomial equation with integer coefficients. According to rational root thecrem:
If & polynomisl P(x}=a.x"+a_x" +..+ax+a, has Wmtepe coclficients, then every rational
foot % {in the simplest terms) satisfies:
. () pisafectorof the constant iam & () g i3 8 factor of the leading cocfficient a,.
[ETTTIT 0| Factorize the polynomial P(z)=2" — 322 +z + 5.
Amdimtomﬁonalmntthmmmthspmsiblcmotoﬂhcqggaﬁonmtl
and +5, On checking, we see that  z=—1 is the root of (z) = 0 becanse

P =(-1P - 3(-1F+{-1)+5=0.
8o z+ 1 is a factor of the P(z). Using synthetic division
-1|1 3 1 5

1 4-5
T4 5 0

Therefore, 2°—32° + 2+ 5=(z+1)(2* - 42+35) )
Next find the factors of 2* — 4z + Susing quadratic formula
Z2—4z+5=0, here a=1,b=—4,c=5§

z= Dt \'(_4)2_4{1)(5j s 4+ 16-20 _ 4+ 4 _ A+
2

2(1) 2 2

&

= z=2%i _
The quadratic factors of 2% ~ 4 z+5=(z—(2+i))(z—(2—1)) =(z—2—i)(z—- 2+i)
Substituting in equation (i), we have the
2 =32+ z+5=(z+1)(z—2-i)(z-2+i)

1.3.1 Sclution of Quadratic Equation by Completing the Square

As we learned in previous classes, completing the square is a powerful and systematic
methed for solving quadretic equations. This technique involves rewriting a quadratic
equation in the form ax 2+ bx + ¢ = 0 into a perfect square trinomial, which can then be
solved by taking the square root of both gides, This method is especially valuable when
the quadratic equation does not factor easily. By completing the square, we can solve
any quadratic equation, even those with irrational er complex roots, maldng it 2 more
effective technique in algebra.

Solve the equation 22* — 12z + 50 =0 by completing square method and
hence express it ag a product of its linear factors.




2221224+ 50 =0

Dividing both sides by 2
Z2—pz+25=10

= 2—23)z=-25

Add 3% on both sides
23+ =—25+%
(z—3P =_16
= z-3=1J-16
= g=3x4i

Therefore, z=23+4ior 2=3—4iare the required complex rocts,

Using the corollary of Fundamental theorem of Algebra the emmuﬂncanbe factorized
using the roots 3 +4i and 3 — 47 as:

22— 122+ 50 =22 - 6z + 25)=2(z—(3+4)))(z—(3—4))=2(z—3—4)(z— 3+ 4)

Hence, 27° —12z+50=2(z—3—4i)(z—3+4i)

F EXERCISE 1.3 _d
1. Factorize the following: v
L) & +4p () 92+168 = (ili) 3¥*+37 (iv) 1442+ 225
(W) z2-2&—1  (vi) 2+62+13 (vii) 2+42+5 (vii]) 22*-222+65
2. Factonize the following polynomials into itz linear factors:
@ 2+8 () 2+27 (@) 2-22+16-32 (iv) z'+2122-100
) 2-16 (vi) 2*437-4 (i) 2*+52+6 (viii) 2*— 327 3969
3. Find the roots of '\z%4! 722 — 144 =0 and henee express it as a product of linear
factors.
4, Solve the follgwing complex quadratic equations by completing square method:
(i) 2z2°-3z+4=0 (i) z*-6z+30=0 (iii) 32" -18z+50=0
(iv) 2 +4z+13=0 (v) 22°+6z+9=0 (vi} 32"-5z+7=0
5. Solve the following equations:
M 22*-32=0 (i) 327243z =0 (i) 52°-5z=10
(iv) 2-52+z—5=0 (v) 4z'-257-21=0 (vi) Z+z"+z+1=0
6. Find a polynomial P(z) of degree 3 with zeros 3, —2i, 27 and satislying F{1) =20.
7. Find s polynomial P(z) of degree 4 with zeros 2i, —24, 1, —1, and satisfying
P(2)=240,
8. Find a polynomial 7(z) of degree 4 with zeros 4, —4, 1+, 1 — 7 and satisfying
P(2)="T2.




1.4 Thme Cube Roots of Umty (Note

Let x be a cube root of unity W know that this finbers comtelrik
X { are called imaginary swmbers. So
x =(1)3
= 2=1 TR £ G
=S £-1=0 e o
=  @-1D@+x+1) =0 sty acaohetmy,
Either x-1=0= x=1
ar L+x+1=0
_ —1++1-4
2
= x= _1:';_“6’ ¢ J-1=1)
Thus, the three cube roots of unity are:

1’ —1-;'\!5! and Tl—.z\fil

1.4.1 Properties of Cube Roots of Unity
(i) Each complex cube root of unity is square of the other

oo L a3, then e @,
2 2
and if _1_2@ = m,'thm"ﬁ= @” [ is read a5 omega]

(ii) The sum of all the three cube roots of unity is zero ie, 1+ @+ @*=0
(iii) The product of all the three cube roots of unity is unity ie., l-o-a*=a’=1,
as a consequence of which, each imaginary cube root of unity is the reciprocal
1

cfﬂlecﬂaer,thatis,m=iz,mz=—.
@ »

1.4.2 Four Fourth Roots of Unity
Let x be a fourth root of unity

1
x = (1)* — =1 = F-1=0 = F-DEF+1)=0
= P£-1=0 = 2£=1= x=%1
and X +1=0 =2x*=-1=x=1%i.
Hence four fourth roots of unity are: 1, -1, i, —1i.
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1.4.3 Properties of four Fourth Roots of Unity
We have found that the four fourth roots of unity are: 1,1, +4, -1
() Sum of all the four fourth roots of unity is zero
1+ (D) +i+H=0
(ii) The real fourth roots of unity are additive inverses of each other.
1 and -1 are the real fourth roots of unity and 1 + (-1)=0=(-1)+1
(ili) Both the imaginary fourth roots of wity are conjugate of each other,
imd4mimaginaqrfomthrumsufunity,whinhmubﬁously¢miugmes
of each other.
(iv) Product of all the fourth roots of unity is —1 i.e., lx(—l)x:x{—i)——l
[EZTTI ] Prove that(P + ) = (e +3)(x + ap)x + ) -
Proof: RHS =(x+y){x+ ay)x+ary)

=(x + )’ +(w + opx + &) -
=(x+ P -xp+)) =@ +y' =LHS, { & =1, e+0"=-1}
Hence proved.
Vv EXERCISE 1 A d

1. Find the three cube roots of

@ 8 (i) -8 (iii)" —2? (iv) &4 (v) -125
2. Find the four fourth roots of 164 El ©235. Also show that their sum is zero in each

CRSS.
3. 1If 1, @ & are the cubs rﬁ}lﬂ of unity, show that 14 &" +@&""= 3where n is &

multiple of 3 reap-ecuvely.
4, Evaluate:

0 [—1+2J—_3 ]’ _I_'[—I—ZJ—_B } @) (1+vBY +(1-vF

5. Shnw_thét.(l'—m-i-af}(l—m"+m‘){l—m"+m"}(l—azf‘+a:-”}...in?,ufactom=25"“
i+43 ) [i-—\@T
2

|+
) 2

=1,

6. Prove that [

5
7. Evaluate Em” , where o is an imaginary cube root of umity.

a+bo’ tew

aw® +bo+c
24 b 4 co’

aw'* +bo® +co™®

8. If wis enimagimary cube roots of unity, prove that

9. If @is a cube root of unity, prove that




Polar coordinates are often more convenient than
Cariegian coordinates in situations involving
circular or rotational symmetry, or when a
problem depends ondistance from a fxed
point and angle relative to a reference direction.
Just as the Cartesian coordinate system uses an
ordered pair (x, y) to describe the position of a
point, the polar coordinate system determines the
position of a point vsing a directed distance r from
a fixed origin O (called the pole) and an
angle & that the line cannecting the origin to the
point makes with the polar axis (typically aligned
with the pogitive x-axis).

180°% ¢

In polar coordinate gystem the location of a peiut P can be described by polar
coordinates in the form (r, &), where » and & are real numbers.

¥4 Rectangylsr coordinsts T Polar coordinate
P )
---------- 1P6Y)
i r
i - & i
o * o Polar axis

While 7 13 typically considered non-negative (r 2 0), it is also possible for #to be

negative (r < 0). The value of r changes depending on
its sign, and this affects the position of the point in the
plane.

When r> 0, the angle # is the measure of any angle in
standard position whose terminal side lies along the
line connecting the origin to the point 2, measured
from the polar axis (positive x-axis).

For example, the polar coordinates (5,%} represent a

pointSunitsnwnyfmmpoleatmnngl:uf% radians.

po Al

=5

L 4




Whmr'-‘-ﬂ the angle fis the measure of any
angle in standard position whose terminal side lies

along the line connecting the origin to the point (2, ¥

but the point ( is located || units in the opposite /’\ﬁ!
direetion (i.2., 6 + z) from the polar axis (positive < 114 >
x-axis). For example, the polar coordinates B=0

(—5,5] represents a point S units away from the

pole, but in the direction of = +:r-5—”radlans Q(—s, %)

m (5, w/4) and (5, 3x/4) repreaent the pame point in the plane ]
1.4.1 The Polar Form of a Complex Number
Consider the adjoining diagram representing the S
complex number z=x+iy . From the diagram, |- 8 4.9
we see that x=pcosfandy=rsingd , where 55 .
) y=rgind
r=|z| is modulus and # is called an argiment
of z. < Olx=rcoal M X
Hence  x+iy=rcosf+irsind (D
where r=|z/=Jx*+»* and g=tan’ 2
X
Equation (i) is called the polar form of the v
complex mumber z.
Example[F] Express the complex number 1++/3 in polar form,
. Stép—1: Putrcosf=1 andrsin =3
Step — I: :'-‘=(1)’+(\,"§]z
= 7#=1+3=4
= r=2

il

Ifx=0,y>0 then 6 = 9%0°
fx=0, y<0 then B=—90°
Ifx=0, =0 then 8 is mndafined.
Ify=0,5>0then 0=0°

_1J_ -1 a
BT 0 J_ o fy=0,x<0then 0= 180"

Thus 1+fﬁ=2mm°+;2mﬁo°

Principal Argument: The principal argument 8 of a complex number z = a + & is
the angle between the positive real axis and the line joining (a, 5) to the origin
in the Argand plane.
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Argz=ﬂ=tm‘l[2] {a=0)

It iz denoted by Arg. It is & single, specific value of the argument, typically chosen

within a standard range: Arg z € (—=x, x].

1.3.3 Operations on Complex Numbers in Polar Form

Additien and Subiraction of Complex number in Polar form

Let z, =r(cosf, +ising, ) and z, =r,(cos8, +isind, ) be two complex numbers in

polar form. The addition and subtraction of these numbers can be computed simply as
2, +z, =7 {co88, +ising ) +r,(cosl, +isind, )

and z —z, =r(cos8, +isging, )—r,(cosd, +ising,)

Multiplication of Complex number in Polar form

Let z =#(cos@ +ginf ) and z, =r,(cosd, +ising, ) be two complex number in

polar form. The product of these numbers can be derived by multiplying them directly

z-z, =r{cos 8 +isin 6, }-n, (cos 8, +isin8,)

2,2, =% 1, 0086, cosf, -+icost) sing, +i8ing, cosd, +i* sind, sind, )

z,- 2, =r,-r; [ (086, cosd, —sin, sind, )+ i( cosf sind, +sind, cosh, )] -+ i =—1L

2,2, =n-5[ cos(, +6,)+isin(6,+8,)] (Using trigonometric identities)
Thus, multiplying two complex numbers in polar form involves omiltiplying their
moduli and summing their atgnments i.e., arg(z,- z,) =arg(z)+arg(z;)

Fmdtheprothctnfs(msﬁﬂmﬁ) s 4( %mm%}

T Lt =5 {son % +sin’ Jand 2, =4 con T+ %)
6 6 2 2

x . . Iz
Hﬂe;ﬁ=5aﬂdﬂl=E, whllerz=4m1d9==?

Substitute this value in the product formula
2,-2, =151, con(8, +8, ) +isin(8, +8,) |

7 3x LT 3= Sz . S
=5x4 —+= Wi +— || = = =
® I:oos(ﬁ 2) :sm[ﬁ ) ﬂ Zﬂ[ms 3 +igin 3)

Thus, the required product is 20[005{+:’sin?‘)
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Division of Complex Number in Polar Form
Let z =r(cos#, +ising, ) and z, =r;(cosé, +ising, ) be two complex numbers in

pelar form. The formula for division of these numbers in polar form can be derived as
below:

z _ ri(cﬂs91+isin€1)
z, r,(cosd, +ising,)
z _ #{cosf +ising,) (cosd, —ising,) [MlﬂﬁplyanddividcﬂzeR_}LSJ

z, r(cosh,+ising,) (cost), —ising,) by conjugateof cos 8, - isind,

z _ 1, (cos8, cosd, + sind, sin#, ) +i(sind, cosd, —cosd, siné, )

2. K cos” 0, +8in’@,

=1 [cos(6, ~6,)+1sin(6, ~6,)] (Using trigonometric identities)
2 1

Thus, the modulus of the division of two complex numbers equals the quotient of
their moduli, while the arguments of the quotient is the difference between their
arguments.

Thus, when dividing two complex numbers, the modulus of the result is the ratio of
their moduli, and the argument of the result 1s the difference between their arguments

ie., wx(iJ =arg(z)—arg(z;)

=

Divide %(@‘%Hﬁnz) by E(cos(—ﬁ]min(—’in.

&6 5 2 2
[zel‘.s:l-:E coe '™ +igin 7| and ::2=E ms(—x)-fisin[—‘i)
i 6 6 5 2 2
2 = 3 x
SphT ity Mbm—.
Substitute value in the quotient formula
A4 —8,)+isin(8, -8
7 irz[“""”(‘5'1 ) +isin(6,-6,) ]

2

Here, 7




If 2= + iy, then write the equation [3z—i|=|3z+7] in terms of x and y.
Given Bz—i|=z+7 (@

Bz—i|= B+ ) —i|=Pr+iGy -1 = /G2 + Gy-D?
132 +7|=Bx+3ip+ 7|=[3x—3ip+ 7| = Bx+ T+1(B3y)| = yBx + T +(-3y)
Substitutes thege values in (i)
VG2 +@y-D ={@z+ 7 +(-3))
Taking square on both gides

(B +By-1)* =Cx+ 7 + (-3
WP+ P —6y+1 =9 +42x+49+ 9

= —Gy+1=42x+49
=% —6y =42x+ 48
or p=-Tx-8

The equation y=—7x— Brepresents a strmghﬂim in the complex plane.

Show that (x+2) + 57 =;8:if-ar’g[z+§% J:% for z=x+iy.
z—2i

z+2i  x+iv+H x+i(;_g'+ 2) _ x+i(y+2)x x—i{y—2)

Solutio = = =
2 x+iy=2 x+i(y-2) x+i(y-2) x-i(y-2)
= 3+2é='('12+y2—4)+4ix= P+y*—4 43 4x
z2=2F Jt:’+(_],r—2)2 24+(-2y IF+O-2¥
( 2\ 3«
A ) z+ _ 7
i Arg[z—ﬁ) 4
4 )
B} J:2+|(_1»=—2)2 3w 4x k2
tanl _ | =— " =tan— =-1
= Pty 4 24y -4 4
x‘+(y—2)2)
= 4x=—l(x’+y’—4) = xX+4x+y'=4

Completing the square for x%, we have
(x+2) +¥'=8
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1.5 Complex Numbers in the Real World

(Voltage, Current and Resistance)
Ohm’s Law is a fundamental principle in physics that describes the relationship
between voltage ¥, current 7 and resistance R in an electrical circuit. Mathematically
Ohm’s Law can be expressed by the formula ¢ =IR.
When dealing with alternating cument (AC) cireuils, resistance generalizes
to impedance (Z). Resistance i a circuit is due to
inductor (X;) and capacitor (X,.). Their difference is
reactance X' = (A;) — (X)), Geometrically it is shown
in the adjacent figure, Here Z=R+iX
Then for AC circnits, Ohm’s Law in Terms of
Impedance is expressed by the formula ¥=I-Z.

| 010111117 If the impedance of cirenit is 11(cos 55.35°. +iain 55 35°) ohms ata
voltage of 25(cm3ﬂ tisin30') ¥, find the value of qurrent in the circuit.
Substitute the voltage 25(cos 30+ ¢ sin 30°) and impedance
11(cos 55.35° + { sin 55.35°) into the equation'F’=J.Z where ¥ is voltage, 7 denote
the current and Z is impedance.

25(cos 30°+1 sin 30°) = I .11(cos 553541 sin 55,357

25( cos'30°+1 sin 30°)
11(cas55.35° +isin 55.35%)

r=_.1,—2f.[ms(3o°-ss.3s°)+fsin(3aﬂ-55.35°) |

R

1= 2.27[cos(—25.35°) + i sin(—25.35°) ~

Express into rectangular form
T=2.27[0.90+{-0.42) |- 2.04-0.95{

Thus, currentiis 2.04 — 0,95: 4,

Cryptegraphy: It iz the science of securing information by transforming readable

messages called plaintext imto secret code called ciphertext using mathematical

algorithms and encryption keys. [t congists of two main processes i.e., encryption to

lock message with complex math, and decryption to unlock it with the right key.

Encrypt the word "MATH" by multiplying it with & complex number

k=12 + 3i and then decrypted back to its original form using the concept of

muyltiplicative inverse in complex mumbers.

Bach letter of the alphabet i assigned a numerical value as follows:
A=1,B=2,C=3,...,Z=26
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Fu'st, we assign each letter in the word “MATH™ a complex mumber with
zero imaginary part. The encryption and decryption are shown in the table below

Letter | Complex Number (z)| zenaypled=zxk |zdecrypied = zencrypled / k| Lafter
M 13+04 (13+0N(2+30)=26+3%| (26+39)/(2+3N=13+0i| M
A 1+0f (+0iX2+3n=2+3 | @+30/(2+3D=1+0¢ A
T 20 +0f 20+ 0)(2+3) =40+ 606 (40+600)/2+3i=20+0i | T
H 8 +0i (B+02+3)=16+24i| 16+24i/2+3i=8+0 H
P EXERCISE 1.5 _d
1. Plot the following points:

@ (2, 75 ) (ii) (—3, 120} (i) [2, E] ' -(ii?} (5, %)

5 ® . 2x ‘195! 5 5S¢
(v) ( 2 E) (vi) (—3, —?) (vid )( 12 ]("ﬂﬂ)(—i- E)

2.  Express ihe following complex numbers in pdlac Jorm:

@ 4+% ) 1+ tm} —+£: (iv) -%-%i
1-i B+ o 3+4i
== Vl
® 5 L5 J—i i 4+3i
3. Convert cach of the complex mmber z in the rectangular form x+iy:
® 4(ms3+isin£] (@) E{oos?—ﬂ smE)
3 q 2l 6 6
)23 . 117
(i) |2|=7,ﬂ'?(z)=i (iv) |z‘=ll,arg(z)=—ﬁ
) |z]';-1§; a:g(z)=-'f—2” (vi) 2 cos (-33) + i 2sin (-33)
4, IF31=9(was£+ﬁinsir) and z, = {msﬁ -+ igin— ]ﬂ:::.n find
4 4 3 3
§ o . Z
L z+z (i z-z (i) z-z, (iv} z_
2
5 ¥ z,:?[cmza—"r +;‘ui_1123 Jand z.—il[mn-”—+ ' llﬁ] then find the
12 12 12 12
following and cxpress the result inko x + 7y form
@ z+z () z-z (iii) 2z, ()




10.

11.

12.
13.

14.
15.

16.

17.

18.

19.

21.

22,

Ifz, :mdz2 are two mmplﬂxnumham, s]:mwﬂ:mt
() Adre(zz,) =drgz, +Argz, (i) Arg[z—l] =Argz —Argz,
2

Divide z, = 6(cos 150° + { sin 150°) by z, = 3{cos 30° + 7 sin 30°) and express in
x + iy form.

Multiply z; = 2{(cos 60" + i sin 60) and z, = 5{cos 90" + i sin 90°) end express in
x -+ iy form.

Find the modulus and argument of z=—2— 2},

Wiite the equation arg(z-2+i)=% in cartesian form, ifz=6®.

If 2= x+iv and arg| 2> 9—”,shnwﬂm .l:2+y"=-1;)1+2y—5=0.
z+1-2i

If z=x+iy and arg(z—2-3{)—arg(z+2+3i)=2% w that 2y =3x
Solve the equation |z— 24 = ‘z+ 2|for z=x Q‘}\?\
For z=x+iy, solwmneq.mum\sg;é:ﬁ 52-3+2i.
Determing the set of po x+iy that satisfy the equation
|32—2+:|=\3z+:|. Q
1=

Ifz=x+iyand w= —— that |w| =1 =z is real.
-5 |

Z
1fz andz, mf@tcumplummbmmmzﬂ— e
-Z2,|

An AC s@supphss a volape of F= m[mﬁ%+lmﬂi ]vo]ls to a circuit

with impedance Z = 1+;J_ ohms, Calculate the current in polar form,

An AC circuit has an impedance of Z = 3 — 6 ochms and is conmected to a voliage
source of V=90 + 30 volts. Find the current in both rectangular and polar form.
Encrypt the word "CODE" by multiplying the complex encryptionkey k=2 — 1.
Then decrypt it back to the original word.

Comsider the complex encryption key & = 3 — 3. Encrypt the word "QUIZ", and
then recover the original word using the inverse of the key.

Encrypt the word “CLASS" by adding the complex encryption key k=—-3 + 44,
Then decrypt it back to the original word.




Functions and Graphs

INTRODUCTION

Functions are of fundamental importance in mathematics, describing relationships
between inputs and owtputs through a rule of correspondence. Understanding key
concepts such as domain, co-domain and range is essential for analyzing different
types of functions, including one-to-one, onto and bijective functions. Graphical
representation helps in identifying intersecting points, such as where o linear fimction
meets the coordinate axes, where two linear functions intersect or whete a linear and
& quadratic function cross. These intersections provide valuable insights into solving
equations visually. Additionally, explering aquare root and cibe root function graphs
allows for a desper understanding of their unique properties and behaviour. This unit
will enhance problem-golving skills by combining algebraic and graphical approaches
to functions.
2.1 Concept of Function
The term fimction was recognized by & German Mathematician Leibniz (1646-1718)
to describe the dependence of one quantity on another, The following examples
illustrate how this term is used:
(i) The area A of s square depends on one of its sides x by the formula 4= »*, so
we say that 4 is a fumction of x.
(i) The volume “¥™ ol a sphere depends on its radius r by the formula

V=gxr’, 50.we say that Fis a function of r.

A functlon is a rule of correspondence, relating two sels in such a way that each
element in the first set corresponds to one and only one element in the second set.
Thus in, (1) above, a square of a given side has only one area and in, (ii) above, a
sphere of a given radius has only one volume.

Now we have a formal definition:

2.1.1 Definition (Function, Domain, Codomain, Range)

A function f from a get X to a set ¥ ig a rule of a correspondence that assigns to each
element x in X a unigue element y in ¥, The set X is called the domain of .

The set of corresponding elements y in ¥ ig called the range of f. While the
codomaim of a function is the set ¥ in which function’s output values (range) lie.
Unless stated to the contrary, we shall agsume heteafter that the set X and ¥ consist of
real numbers.
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Co-domsin is the set of all possible outputs but the rangs is the somel set ufuu!plm]
produced by the function imder the given domain that is rangs set is always 2 subzet of co-domain.

2.1.2 Notation and Value of 8 Function

If 8 variable y depends on a variable x in such a8 way that each value of x determines

exactly one value of y, then we say that “y is 2 function of x”.

Swiss mathematician Buler (1707 — 1783) invented a symbolic way to write the

statement “y is a function of x” as y = fix), which is read as “y is equal 1o fof x”.

A function can be thought as a computing ®

machine f that takes an input x, operates Function .

on it in some way and produces exactly Ipuix 1‘:@) Output £(x)
e

one cutput fx). This output f(x) is called e
the value of fat x or image of x under . ARy Maniine

The output /{x) is denoted by a single letter, say v and we write y = f{x).

The varizble x is called the independent variable of / and the variable y is called the
dependent varlable of /. For now onward we shall only consider the function in
which the variables are real numbers and'we say that fis a real valued function of
real numbers. :

Givenflx)=» - 2@+dx—1,find: () A0 (@ A
(i) (-2) @ ey @ (3o
EEITT f(x) = £ - 224 4 — 1
(i fl0)=0-04+0—1=-1
(@) MD={PR-2012+41)-1=1-2+4-1=2
(i) f=2)=1(-2) -2(-2 +4(-2)-1=—8-8-8-1=-25
(iv) AT +x)=(l+xP -2l +2P + K1 +x)—1
=1+3x+37+8 -2 -dr- 23 +4+4x— 1
= +x+3x+2

2
o) f[1)=(1j—2(1] +4{1J—1=$—%+5—1, x50
X X X X X X

Find the domain and renge of f{x) = x2.
Fareveryraalnumharx, f{x) =%* is a non-nepative real number. So,
Domain /= set of all real numbers ; Range f= get of all non-negative real numbers.
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Findthedomajnandrangenff(xhﬂ.

X

oL Atx=2 and x =2, f(x)=x’ 4isnotdnﬁned. So,
Domain = set of all real numbers except —2 and 2 or R—{-2,2}

Lety=x=x 4=>y(xz—4)=x=xzy—4y=x
Py—x—4y=10
o ~CDEJCL -40)4)

2 !ntatvnls ; a5 open

Y interval -and 'closed interval.

f . Tn an'open interval (a, 5), the

x=ﬂ,y¢u pints re not inchuded. In

2y 8 glosed intarval [a, B,

Cleatly x is defined for all p+ 0 (SRcendpot s s )

For y=0, we have ﬂ=xz't4 = x= 0

This is f{0) =0

So, range = set of all real numbers or (—o,0)

Find the domain and rarige of f(x)=vx"—9.

EIATTTIT, As square root of a negative mumber is not a real number, therefore
¥-920 (i)

Let ¥*—9=0=> x=%3

Critical points divide memmber line into three regions;
Putx=—4 in i), 16 — 9 >0 (True)

Putx =0 in {f), 0—9 >0 (False) : _
Putx=4in (i), 169 > 0 (True) 3 4
So, domain £= (~w, 3] U [3, )

The smallest value of x*—9is 0 (when x=13).

= y=vF-9=/0=0

Aa \:c| increases beyond 3, x® — 9 grows to +oo, 30 ¥ grows o +wo,

So, range [ = [0, x0)

2.1.3 Vertical Line Test

The wvertical ling test is a method ugsed to determine whether & graph represents g
function, A graph represents a function if and only if no vertical line intersects the
graph more than once. If any vertical line passes through the graph more than once, it
is not a fimection.

£
v




{a) a fanction (b) = fanction {c) mtnﬂn:lmtim (d) net a function

2.14 Types of Function

(i) One-to-One (Injective) Function

A function f: x — y is one-to-one if different inputz produce different outputs, that is
if f (x,) = f(x,) implies x,= x,. This means that no two diffetent elements of the
domain map to the same clement of the co-domain,

For example, f (x) = 5x + 7 i3 cne-to-one becanse if Sx,+7 = 5x,+ 7 implies x, = x,,.
(i) Omnto (Surjective) Function

A function f: X —Y¥ is called onto (or surjective) function if every element in the
co-domain ¥ has at least one pre-image inthe domain X, In other words, for every y
in ¥, there exists an x in X such that f(x}=y.

For example, f(x)=2x+3,where‘th§-domahandm—dnmainareboﬂ1realmmbm.

Here y=2x+3$x—y23,HerefureanhymR there exists y23 i R such that

f[%*): P

(i) Bijective Function
A function f3.X—> ¥ is called bijective if it is both one-to-one and onto.
Piecewise Fomction

A piecewise function is a function that is defined By

by different expressions (or “pieces”) over | 3 f

different intervals of its domain. Each piece 2

applies to a specific part of the domain. ] A A ']," / =

—— f(x)={2:+1 .1fx<ﬂ -;-3-2—1,::://1 2 3 4
x =1 if x20 || /_2

For x< 0, the fimction behaves as 2x+1 and for [ 3

x20, it behaves as x*>—1 4
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TR 8| Show that the function f(x) = x-+1, where the domain and co-domain
are all real numbers, is bijective.
Afunctionishijectiveifitisbuﬂmne—to—oneanﬂanto.
A function is one-to-one if f{x)=f(x) = % =x, for f(x}=x+1
Suppose f(x)=f(x,)

= xt+l=x+1

— n =X
S0, the given function is one-to-one,
It is also onto because for every resl number y, there is a real number x (specifically
x=y— 1) such that f(y —1) =y — 1+ 1 =y, Hence, /(%) is bijective:
2200 6| Show that the function F(x)=x* -2, where thiz’domain and co-domain
are all real numbers, is neither one-to-one ner onto.
ST As f(x)=f(x) = ¥ -2=x-2 =38 =x
Taking square root, we get X =x; or x =—-x;
This does not imply that x, = x, , for example
n=2x=-2=x+xmdf(Q)=2= f-2).
Thus, fig not one-to-one.
Also, the element —2 in the ¢o-domain R is the smallest
value that f(x)=x" -2 “can attain, and it is only
achieved when x = 0. However, any number less than —2

(in co-domain R) is not the image of any real number x in :_3
domain R. For exmple, fx) = —3 =x*—2=—3hss no 24
resl root. Hence, f(x) is nether one-to-one nor onto.

PV EXERCISE 2.1 g
I. Given that (@ fl=x-1 ®) fix)=2x+3

Find: (@) A(-3) (i) £(0) (i) f(x-2) (iv) Mx*+3)

2. Find ﬂ"'—""?i@
?

O f)=4+7 (i) flx)=sinx

(i) fix)=x +x-1 (iv) f{x)=tanx

and gimplify where,




9.

10.
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Express the following:

(a) The ares 4 of a square as a function of its perimeter P,
(b) The circumference C of a circle as a function of its arca 4.
(c) The surface area § of a cube ag a fimetion of its volume V.
Find the domain and the range of the function g defined below:

bx+7,x2-2

0 e@=35-x (@) g&)=vx+2 (iif) g(r)={4_3x i

x+2

) g)=ix—3] M) 6)=7

Given f(x) =2 —a® + bx + 1, Hf{i)——.‘i and f(-1)=0, rmamevaiucmta
and b,
A stone falls from s height of 60m on the ground, l.hﬁfhﬁghlfl after x seconds is
approximately given by A(x) =40 — 102,
(i) What is the height of stone when: N
(@) x=1sec? (b) x=15sec? {c) x=1.Tsgec?
(i) When does the stone strike the ground?"
Consider the function f (x)=3x-5. ¢~
(i) Determine the domain and range of £ (x).
(ii) Is the function fone-to-one? Justify your answer.
(i) Is the function fonto if the co-domain is all real mumbers? Explain.
Let: R -» R be defined By () = =
&) Fmdthedomahmdmge of f(x). (i) Determine whether f{x) is onto.
(iii} Prove thatf(x) is one-to-one
Consider the function /2 R" — R‘ defined by f (x) = ¢™. Show that f(x) is &
bijectivgy, "
Let ™R — R be given by p(x) = 2 — 3x. Determine if g(x) is injective and/or
surjective.

2.2 Finding the Intersecting Point(s) Graphically

The point of intersection is a point where two or more graphs meet on the coordinate
plane. This point represents the solution to the equation of the given function.

2.2.1 Intersection of a Linear Function and Coordinate Axes

As we know that lingar function is a function in which the highest power of the
variable ig one. While the coordinate axes refers to x-axis and y-axis in the Cartesian
coordinate system.
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Find the points of intersection of a linear function y=2x+6and
mnrdmatemsgmphcally.

Tableofvaluesufy=2x+ﬁmgiven

below:
X y=2x+6
-1 4
0 6
8

Hence, from the above graph, the points (3, 0) and (0,6)fijre>'ti:£ points of
intersection of y =2x+ Gand coordinate axes.

2.2.2 Intersection of Two Linear Functions

The point of imtersection of two linear funections is the peint where their graphs cross
each other. This means the two functions have the satne x and y values at that point,

| AT 0] 8| Find the point of intersection of (¥ =3x+2 and y=—x+6 graphically.
FZTTIT, Table of different values of x and ) [ *
iz given below:

P

x| y=3x+2 | y=—x+t6
T a [S);
0 2 6
1 5Ny 5

Byplntﬁng_theﬁﬁuvepnints,weaeethat | 2 S Sl R
(1, 5) is the point of intersection of both the |  / IS S ESIESIERIES

straight lines as shown in figure.

2.2.3 Intersection of a Linear Function and 2 Quadratic Function

A line and a parabola can either intersect at two points, one point or not as intersect at
all. If there are two solutions, the system has two points of intersection. A single
solution indicates that there is only one intersection poini, suggesting that the lme
may be tangent to the parsbola If no solution exists, it means the line and the
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0 0 / x o /

Tero Solwtions One Solution No Sﬂ-ﬁm

gy
Wy

9| Solve the linear function y=—x+3 and quadmtlc fimétion
= .7;'2 6x+ 3 grephically,

[T, Clearly (3, 0) and (0, 3) are the x-intercept a:nd y-intercept respectively of
y=—x1+3.

y=x*-6x+3 )

Putx= 0 in (3), 8o (0, 3) is the y-intercept.

Put y = 0 in (i), we have “
0=x"—6x+3

_ (86 -4(1)3)
2(1) '
g 63612 =.-.6£J2_4
2 \" 2

6125_31\,—

=3- J' 3+6=06,54

80 (0.6, 0) and (5.4, 0) are the x-intercepts.
Now we find vertex (&, &) of the parabola

L Y

2a 1)

E=(3Y -6(3)+3=-6
So, the vertex is (3,—6).
Hence (0, 3) and (5,—2)are the solutions (points of imtersection) of the given
funetions.

I
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2.3 Grapll of the Square Root Function

9| Graph the square root function y = 24x +1
Clearlyﬂmdomainofy= 2/x +1is x> 0, as the square root of a negative
numberisnotamalnumber.'l‘hemgeafy=2~f;+1isy=_’l.

Table of values and the graph of the function are given below:

x | p=2x+1
0 1 %5
1 3 Bl
2 38 7
3 35 i
7] 5 i
4
5 5.5 .
6 59 3
7 6.3 19
8 6.7 id
: 0l-1.2 34 5 6 7 & 9 1011
9 7 P
10 73

2.4 Graph of the Cube'Root Function
Graph the cube toot function y=x—1
[T, Table ofvalues and the graph of the function are given below:

JI.}I
X y ﬂl ! ! 25
4 7 1 15
-3 1.6 t—1 =1
= B
= 2 ‘4—54—3—2—10}2345 6
=] 0.5
0 s

0

1

2 1 -15
3 1.3 —
4

5

14 —2.5
1.6 {34
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2.5 Rea] Life Applications
Growth and Decay in Finance (Predicting Long-Term Stock Prices)
When something increases in quantity or size over time, it is called growth. For
example, money in 8 bank account earning interest (it grows larger), a population of
rabbits is increasing over months.
When something decreases in quantity or size over time, it ig called decay. For
example, a madioactive substance v losing its strength over vears, a cup of hot
coffee is cooling down over time,
The value of a stock follows the exponential growth model P(f) = Pe”,
where P, is the initial stock price, r is the growth rate per yearand ¢ is the time in
years. Suppose a stock is currently valued at Rs. 5,000, and it is expected to grow at a
rate of 5% per year.
{i) Find the value of the stock after 10 years,
(ii) After how mairy years will the stock double in value?
2T () The formula for the expunenu&l growth is:
P) =P ?
Given P, = 5000, r=0.05 (5% growth rate), and ¢ = 10 years.
P(10) = 500025412 = 5000 &5
Using €™ = 1.6487
F(10) = 5000 *.1.6487 = 8244

So, the value of the stock aftér 10 years is approximately Rs. §244
(i) ~We want to find ¢ when the stock doubles, i.c., when P(f) = 2P, Using the

equation;

2P, =P, "
Dividing both sides by P, we have 2 =
Taking the natural logarithm en both sides: In2 =t
n2
r
0:6931
0.05

=13.86
So, the stock will double in value i.e., approximately 14 years,

and t =
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The concentration of a pollutant in & lake, in parts per million (ppm),
decays over time according to the function
100
()= Ty
where £ is the time in days sinece the pollutant was infroduced.
(i) Whatis the concentration of the pollutant after 4 days?
(ii) After how many days will the concentration drop below 10 ppm?

(1) The pollutant concentration fimetion is C(t)=— 100 ) whe;t‘e tis the
Jt+1
time in days.
Concentration after 4 days:
100
ey
_100
5
=~ 44,72 ppm
The concentration after 4 days is about 44, '?2 ppm.
(ii) When will the concentration drop below 10 ppm? Set C(£) = 10
L
s
= At+l=i0
=  t+1=100
= +=99
After 99 days, the coneentration will drop below 10 ppm.
_ P EXERCISE 2.2
1. Find the point of intersection of the coordinate axes and the following linear
functions graphically:
) y=-35x+10 (i y=2x-1
1 " 3
(111) y—51—3 (iv) y—3x+§

2. Find the point(s) of intersection of the following functions graphically:
(i) SfxX)=2x+5, g{x)=—x+5

(i) f)=3x-2, g(x)=10-x




i) F()=2x—4, g(¥)=3x-1
() SG)=-3x-4, ga)=_ x+3
V) f(x)=x-1, p(x)=x"—-4x+3
(vi) f(x)=3x+4, g(x)=x"+2x-8

(vi) fx)=-2x-1,glx)=2"-4x
(viii) f(x) =2 - 3x + 2, glx) =x+6

Graph the following functions: O
@ y=+3x @ r=vE+s o
(iif) y=-%~5 @ y=—Jariea

W y=42Zx+1 v y=24x-3

wii) y=U +x-2 AV

A building’s height over time is modt-'led.by H{#) = 100 + 20z which is in metres
and ¢ is the time in months, Thn’ﬁtihht of a growing tree nearby is given by
=50+ 10t + £

(@ mwhamm:muﬂmbuﬂdmgandmhavethuamahmghﬂ

(i) What will that hmgh:tbe?

Skeich the graphs of: btﬂﬁ functions and determine the time when the tres will
avertake the hm@t of the building,

A rm:lmacmrb subumncc has & half-life (/) of 2 years. If the initial quentity O,

wlﬂ@gi‘ainsandlh&expnnenu&ldacay fimction is Q1) = Qu[ T,thenﬁnd the

remaining quantity after 6 years graphically.



Theory of
Quadratic Functions

INTRODUCTION

This unit explores methods to find the maximum and minimum values of quadratic
functions uging completing the square and graphical analysis. It also covers the inverse
of quadratic fimctions, determining their domain and range. Additionally; students will
learn to solve absolute value quadratic equations and inequalities, as well ag equations
of rational, radical and exponential forms that can be reduced to quadratic equations.
Finally, the unit demonstrates the practical applications of quadratic equations and
inequalities in solving real-world problems, providing 2 strong foundation for problem-
solving and analysis.
3.1 Quadratic Function
A quadratic function is a polynomial function of degree two. It is typically expressed
in the standard form:

A =wl+bx+c
where g, b and ¢ are real numbers, and a # 0.
3.1.1 Anslyzing Quadratic Fugction by Sketching

As we know shape of the graph of a quadratic
function f{x) = &x* + bx + ¢ is a parabola. The
parabola opens upward or downward, depending on
the sign of the leading coefficient g, as shown in the
given figure.
The tip of the parabola, labeled as ¥ in the diagrams above, is known as the vertex
ha\dngcoordiﬁates{k, k). The vertical line passing through the vertex serves as the
axis of symmetry for the parabola. The vertex represents a tuming point, where the
graph changes direction.

o Ifa>{), then the veriex ig a2 minimum point.

= Ifa<{), then the vertex ig a maxinmmm point.
For sketching the quadratic function, we need to find the x-intercept, y-intercept and
the vertex. For analyzing the sketch of quadratic function, we find whether the vertex
i5 2 minimum or a maximum point and indicate the intervals where the function is
increasing or decreasing.

a<i

B
TR T
e <
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LA T 1| Sketch and analyze y =—x*—2x + 3.
AT y=—%—2x+3
The y~intercept is y = ~(0F — 2(0) +3 =3
The x-intercepts are found by solving the equation:
2 -2x+3=0 or x¥*+2x—3=0
*+3x-x-3=0

xx+3)-1x+3)=0
x+3)x-1D=0
x+3=0,x—1=0
x=-3,x=1

Now, we find the vertex

_h__(D_
2a  2(-1)

k=—{-1P-2-1)+3=-1+2+3=4 ;
So, the vertex (-1, 4) is a maximnm point. The fimction y

is increasing on (~o0, —1) and decreasing on (~1, ).

3.12 Finding Meaximum and/Minimum Values of Quadratie

Functions by Completing Square

Completing the square is a technique used to rewrite a quadratic function

flx)=ax® + bx + ¢ in the following vertex form:

&) S ate—hyp+
N b _ B

where vertex .(k,k),b _Zamdk_c_d-a

o Ifa>p,theminimum value of f{x) atx= his k&

o Ifa<0, the maximum value of f{x) at x= his &
[Ftnnun2| Find the maximum or minimum value of
f(x) =—2x*+ 4x+ 3 by completing square.

Solution fix)=-202—2x)+13
fxe)=2x—-2x+1-1)+3
Six)=-2x-1¢-1]1+3
Ax)=-2x—-1¥+2+3
f(xX)="2x—1P+5

Here a=-2<0

Therefore, the maxinmum value is 5, which occurs when x=1.

Pk | m omomom o .
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[ETTEr33] Find the maximum or minimum vakie of 5|
fx)=x*—2x-3 4
ETTTIT, Given that f(x) = x*—2x—3 :
Herea=1,b=-2,c=-3 ]
__b__ 2, Fa
2a  2() -3 -2 _E
2 1

and k=e-2 o3 O _ 4 i
da a1 -3

Here a=1>0 &
Therefore, the minimum value of f(x) at x = 1 is —4. N

3.2 Inverse of Quadratic Function

Quadratic functions are typically not one-to-one over their entire domain. To find an
inverse for a quadratic function, we nmst restrict its domain to a portion where it is
one-to-one. Commonly, we restrict the domait to either x > k (where & is the
x-coordinate of the vertex) or x < k.

Find the inverse of f(x)=x"44x+3,x2-2. Also find its domain and

THnge.
T An) =" +4x+3 , x2-2
Let y=x*+4x+3
x=)y"+4y+3 (Interchange x and y)
V+ay+3—x=0
_—4#J(a - 43 —x)
d 20
= -4+ J16—12+ dx
2

—4+Jd+4ax
y=——s
4+ 2fT+x
yY=—a

Fl=—2t1+x (Replace y with /' (x))
The above inverse function has both a positive and a negative component. To determine
which is the inverse, we find domain and range of the given function.
Domain £ = [-2, o)

(Using the quadratic formula)




Toﬁndmnge,weprweedas
f&x) =x*+4x+3
= fld) =@x+2y-1
Therefore, minimum value of f{x) is —land hence
Range f' =[-1, o0)

Domain /! =[-1, =) , Range f~! =[-2, )
Now, we substitute any value of x that falls within the domain of £~ (x). We choose
the value x = 0.

FLHO==2+1+0=—1
U= -2-N1+0=-
We notice only —1 lies in the range of /. Therefore, we discard negative component.
Hence f'(x)=-2++1+x
3.3 Absolute Value
The absolute value of x, i defined as

, x20
le:{ %, x<0

3.3.1 Absolute Value Quadratic

Equations

To solve the absolute value quadratic equations, all answers must be substituted back

into the original equation to-verify whether they are wvalid or not. Sometimes,
eous” solutions may. appear which are not valid and must be eliminated from

the final answer.

[T 8 Solverke 4| = 5

W)=
e
r—-4=5 of X*—4=-5
=9 o X*=-1
x=13 or x=:I:J—_1=imaginary
Cheek: For x=3 For x=-3
34| =5 [3*)-4|=5
5] =5 5] =
5=5 5=5

Hence solution set = {+3}




33.2 Ahsolute Value Quadratic Inequa]lllea

Absolute value quadratic inequalitics are inequalitics that involve & quadratic
expression within absolute value bars. They are generally of the following forms:

lax* +bx+e<d,|@+hx+c>d, | @ +bxtc <d, |a’+bx+el>d

Solve |xz—6x—4|<3
EXITTT, b — 6 — 4 <3
B<x-6Gx—4<3
B<x*—6x—4 and
X—x-4+3>0 and
X-ax—1>0 D .,
Here we solvex® —6x—1=0

—~(—=6)+ /(=6 —4(D)(1)
20
_ 6+36+4
EE——

6=-/40
3
6210
AT 2

x = 3++/10 _
x=3-4/10 \ 3+ 10
x=-0.16, 616
Hence critical values divide the mumber line into three regions.
x<-018 —0.16 <x <6.16 s x> 6.16

2-6x—-4<3
P-x-4-3<0
P_6x—-7<0 (i)

x=

x:

F

2 3 &

[ ]
Ly e
-
e |

2 - i

Testx =—1 in (i), we have

(1P-6(-1)-1>0= +6>0 (True)
Test x = O in (i), we have

(0P -6 -1>0 = -1>0 (False)
Test x = 7 in (i), we have

(P-6(N-1>0 = 6>0 (Te)

Solution set is (-0, 3 —10) v (3 + /10, )




Now, we conmdﬁ' (i) and solve

PX—6x—-7=0
X+x-Tx-7=0
xMx+1)-T(x+1)=0
x+1)x-7)=0
x+1=0 , x-7=0
x=-1 . x=7
These critical values divide the number ling into three regions,
i I x{:_l 1 |H I i [ _1{:‘{? I [ 1 ”| { l-'x'i'|x}T| E
4 3 2 -1 0 1 2z 3 4 5 6 9,8 9

Testx=-2 , x=0 and x= 10 in (ii), we have
2 -6(-2)-7<0 = 9<0 (False)
OP-6(0)-7<0 = -7<0 (True)
(10— 6(10)—7<0 = 33<0 (False)"
Solution set is (-1, 7)
Hence the solution set of the given absolute vnlu: quadratic inequality is
{0, 3-V18)U B + V10,0 M L D=1, 3-V1I0)u 3+ 10,7

V~ EXERCISE 3.1

1. Find the maximum or minirmfin value of the following quadratic functions by
completing square:

O fO=F+6x+180 ) F=r+4x
(i) f(x)=-x"+8x+13 (iv) f(x)=—x"-3x-5
) f)=3+62-13 () Fl)=-24"—x+21

2, Find the paximum or minimum point by sketching the following quadratic
functiong; Alse find their domain and range:

M f)=x"-4x (i) f(x)=x"-5x+6
(i) f(x)=—x*+2x-8 iv) fx)=x*—4x+4
V) fx)=x"+2x-83 (v) f(x)=6—x—x"
3.  Find the inverse of the following quadratic functions. Also find their domain and
range:
M fx}=x*-3 x<0 (i) f(x)=r*+6x+4, x<-3

(i) f)=2x—8x+11, x22 (iv) f(x)=3x"-2x+6, x25
& f()=2(x-3+], x23 (M) fO)=-3+4)F"-5 x<—4
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4, Solve the following absolute value quadmatic equations and inequalities:

® |+1=5 @) |F+5x+4=0 @) | -6x+8=
(V) Pr’-Tx+2=x"-x+1 (V) [3*-4<5 (vi) [F-3x+2/>4
(vil) |« —5x+6/<x+2 (vit) [24" —3x—5| < 4
3.4 Solutions of Equations Reducible to the Quadratic
Equation

There are certain types of equations, which do not look to be of degree 2,(but they can
be reduced to the quadratic equation, We shall discuss the solytions ofithe rational and
radical equations,

3.4.1 Rational Equations Reducible to the Qnadral]{: Eq uation

A rational equation is an equation containing one or more rational expressions, where
rational axpmsmns typlca]ly contain a varighle in the denominator.

Sul\re —+——1 720, x#-1
1+i i
x x+1

Multiplying both sides by x(x+1),w=hﬂﬁﬂ
(x+1)+2x=x(x+1)
x+1+2x=x"+x
Ix+l=x"+x
X +x-3x—-1=0 :
X —2x—1=0
L EDEVED -4
2Q1)
2+~4+4

2
248
T2

2422

2
=1+2
Hence, Solution Set = {11\5}
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3.42 Radical Equations Reducible to the Quadratic Equation
Equations involving radical expressions of the variable are called radical equations. To
solve a radical equation, we first obtain an equation free from radicals. Every solution
of radical equation is also a solution of the radical-free equation but the new equation
has solutions that are not solutions of the original radical equation. Such extra solutions
(roots) are called extraneous roots,

Solve vx+8+vx+3=+12x+13
2T, Vx+8+4x+3=1/12x+13
Squaring both sides, we get
x+8+x+3+2(x+8)Wx+3) =12 +13
2(x+8)(Wa+3)=10x+2

= (x+8)(x+3)=5x+1

P4+ 11x+24 =252+ 10x + 1
= U —x-23=0

=  (4x+23)x—1)=0

x=—§orx=1
24

On checking we find that —g is an extraneons root. Hence solution set = {1}

3.5 Real World Problems of Quadratic Equations and
Inequalities
We shall now proceed to solve the problems which, when expressed symbolically, lead
to quadratic equations in one variables.
In order to solve such problems, we must:
(i)  Suppose the unknown quantities to be x or y etc.
(ii) Translate the problem into symbels and form the equation or inequality
salisfying the given conditions.
The method of solving the problems will be illustrated through the following examples:
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LRTT4T 9| The length of a room is 3 metres greater than its breadth. If the area of the
room is 180 square metres, find length and the breadth of the room.
Let the breadth of room = x metres
and  the length of room = (x + 3) metres
3 Area of the room = x{x + 3) square metres
By the given condition, we have
x(x +3) = 180
= 2XP+x-180=0
= {x+15Kx-12)=0
x==15 or x=12
As breadth cannot be negative 30 x =—15 is not admissible.

Whenx=12, wegetx+3=12+3=15
Hencebreadthufﬂlermm—umeu‘esmdleng&mfthemam 15 metres.
[ETLTNT10] A company manufactures laptops and its weekly profit function (in
thousands of dollars) is P{x)=-x"+2x+3, where ¥ is the mumber of laptops
produced (in hundreds). Find the range of production levels where the company
mekes at least $4,000 profit.

I Here P(x)24

—x +2x+3>4
—x +2x+3-4>0
- +2x-120
P —2x+150
(x-1°<0
This only holds troe when (x—1)* =0 = x=1

The mmpany-mali.cs exactly $4,000 profit when 100 laptops are produced (since x =1
means 100 laptops). There is no production level where profit is more than $4,000.

P EXERCISE 3.2
1. Solve the following equations:
L1 4x L x  xtl_ 5
(1) £+F x#ﬂ (11) m+7—2,1: l,ﬂ
(i) —— k=T sy o

x+1 x+2 x+§




a b 1 ~ X+l x-1
——=a+bxE— - =S =2, x# 1, x#-]
e s IR e el
i) 3 +15x—24x 4 5x+1=2 (vil) V2x+8+Jx+5=7
(viii) V3x+4 =2 ++2x—4 (ix) vx+7+vx+2=+6x+13

(x) Vx+5-+x-3=2

A farmer bought some sheep for Rs. 9000. If he had paid Rs, 10{) less for each,
he would have got 3 shesp more for the same money. How manjkgh];“eep did he
buy, when the rate in each case is uniform? O

A man sold his stock of eggs for Rs. 2400, IfhchadZdomp@hnwomdhaw
got the same money by sclling the whole for Rs. 0.50 pqidozen cheaper. How
many dozen eggn did he sell? @

A cyclist travelled 48 km at a uniform speed. Ifh&lyld velled 2 km/hour slower,
he would have taken 2 hours mare to perfumx\f;é(iaumsy. How long did he tuke
to cover 48 km? C

To do a picce of work, Abdullgh {OidaysmnrethanAbdulHadi.Togcthﬂ
they finish the work in 12 days. 4 would Abdul Hadi take to finish it
alone? &_\

The braking distance (in metrdg)lof a car is modeled by:
d(s)=0.0232+0.h,whe§hathespeedofcarinkmfh

~

lfthemaximmnsa.%{gﬂng distance i3 S0 metres, find the range of speed where

bmkingisaafe\\

A rocket fallows the height function h(t)=—5¢" + 20t + 30, where k() is the
N

height igh\diétres and ¢ is the time in seconds. Find the time interval during which

the ro 13 at least 40 metres above the ground.



Matrices and
Determinants

INTRODUCTION

This umit introduces the fundamental concepts and operations of matrices, equipping
students with the skills to perform matrix addition, subtraction and multiplication
involving hoth real and complex entrics, It explores the essential propertics of
determinanis and provides techniques for evaluating the determinant-of s 3x3 matrix
using cofactors and determinant properties. Studenis will Jeam to apply row
operations to determine the inverse and rank of matrices, -ag well ag distingnish
between consistent and inconsistent systems of linear equations through practical
examples. The unit further explores imio solving systems of linear equations, both
homogensous and non-homogeneous, using advanced methods such as matrix
inversion, Cramer’s Rule and Gaussian elimination, Emphasis is placed on the real-
world applications of matrices in diverse fields such as graphic design, cryptography,
data encryption, geomeiric transformations and highlighting the importance and
versatility of matrix algebra in solving complex, practical problems.

4.1 Matrix

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing. For this new notation the word matrix was first used by the
English mathematician James Sylvester (1814 — 1897). Arthur Cayley (1821 — 1895)
developed the theory of matrices and used them in the linear transformations. Now-a-
days, matrices are used in high speed computers and algo in other various disciplines.
The concept of determinants was used by Chinese and Japanese mathematicians but
the Japanese mathematician Seki Kowa (1642-1708) and the German Mathematician
Gottfried Wilhelm Leibniz (1646-1716) ere credited for the invention of
determinants, G. Cramer (1704-1752) emploved the determinants successfully for
solving the sysiems of lincar equations.

A rectangular array of numbers enclosed by a pair of bracket is called a matrix such as:

230

2 -1 3 . 1-14 -

[—5 4 7] W o 3,6 @
411



<> msenstes (I
calladoolnmm The numbers used in rows or columms are said to be the entries or
elements of the matrix.

The mairix in (i) has two rows and three columns while the matiix in (ii) has four
rows and three columns, Note that the mumber of the elements of the matrix in (i1) is
4x 3=12. Now the general definition of a matrix is:

Generally, a bracketed rectangular amay of mn elements a1, 2, 3, ..., m
j=1,2,3, ..., n), arranged in 7 rows and » columns such as:

G, &3 Gy ‘" &,
awa a. %
LR G

G Gz g " By,
ie called an m by » matrix (written a5 mx nmatrix), where mx 7 is called the order
of the matrix in (iii}. The matrices are usually represented by the capital letters such
as 4, B, C, X. ¥, etc., and small letters such a8 g b, aLmm or a,,a,,8;, .., etc.,
are used to indicate the entries of the matrices.
Let the matrix in (iil) be denoted by 4. The ith row and the jth column of A are
indicated in the following tabular representation of A.

Jith column
4

[ a, By, Ty v iy &, |

Oy > B Bp ™7 Gy vt Oy

a&l aﬂ aﬂ e GSJ anw a!.

e E : : ()

ﬂhm —>| 8y dy dy ,"d‘ .

| Byt Bz Oy At P |

The elements of the /th row of 4 are a,, a,, a4, ... ;... 2, while the elements of the
Jjth column of 4 are @, @,, 4;...4,...a,,. We note that a,, is the element of the ith
row and jth colummn of 4. The double subscripts are useful to name the clements of

2 -1
the matrices. For example, the element 7 is at a,, pusitiuninthnm:m'ix[ .4 ﬂ

For convenience, we shall write the mainx A4 as:




13 4 ) Mistclons md Determbuants <46 > Muthematics

A=[a) o d=[g], fori=1,23,..,mj=1,23, .., n8 where a, is the
glement of the ith row and jfth colummn of 4.
The elements (entries) of matrices need not
always be numbers but in the study of | Thematrix 4iscalled real matrix
matrices, we shall take the elements of the | if all of its elements are real,
matrices from R or C.
Row Matrix or Row vector: A matrix, which has only one row, ie., 1x»a matrix of
the form [a, a, a, .. a,] i said to be a row matrix or a row vector.,
Colymn Mairix or Column Vector: A matrix which has only ene column ie.,
a;
Gy

an mx 1 matrix of the form | a5 | is said to be & column mattik or a column vector.

Oni
: 2
For example [1 -1 3 4] is a row matrix having 4 columns and |—1{is a column
' 3
matrix having 3 rows.
Rectangular Matriz: If m# n, then the matrix is called a rectanpular matrix of
order mxn, that ig, the matrix .in which the number of rows is not equal to the
number of columns, is said to e a rectangular matrix. For example;
2 =30
[2 3 1:|and1 il are rectangular matrices of orders 2x3 and 4x3
-1 0 4 3 -15
01 2
respectively.
Square Mafrix: If m = n, then the matrix of order mx 2 is said to be a square matrix
of arder n or m. i.¢., the matrix which has the same number of rows and columns is

1 1 2
2
called a square matrix. For example: [D],[_l z]and 2 -1 8| are square
3 5 4

matrices of orders 1, 2 and 3 respectively.




Let A = [ay] be a square matrix of order n, then the entries a,, @,,, 4y, . G, Torm

the principal diagonal for the mairix 4 and the entries @,,, 4, ;s % aps ~os Gei2r @

form the secondery diagonal for the matrix 4. For example, in the matnx

Gy Gy Gy Gy

@y dp Gy Gy . _— —
, the entries of the principal diagonal are a,,,4,,,4;.,, 9nd the

Ay H33 G5 6y

Gy Gy Gy Gy

entrics of the secondary diagonal are a,,a,,a,, .4,

The principal diagonal of a square matrix i3 also called the leading diagonal or main

diagonal of the matrix.

Dlagonal Matrix: Let 4 = [ay] be a square matrix of order n,

If ay = 0 for all i= jand at least one ay = 0 for { =, that is, some elements of the

principal diagonal of 4 may be zero but not all, then the matrix A is called a diagonal

. 8 0 0000
1 _
[7].]10 2 o andgn_ggmdiagonalmatiees.
00 5 _
0 0.0 4

Sealar Matrix: Let A = [ay] be & square matrix of order 2.
If ay =0forall i+ janday =¥ (some non-zero scalar) for all i =, then the matrix
A is called a scalar matrix of order #. For example:

a 0 0 3000

70 0300 ;

0 7/ 0 a O|fa+#0)and 0030 are scalar matrices of order 2, 3 and 4
0 0la 0003

respectively.

Unit Matrix or [dentity Matriz: Let 4 =[ay] be a square matrix of order n. If a; =0
forall i+ jand a; =1 for all { =], then the matrix 4 i3 called a unit mairix or identity
matrix of order n. We denote such a matrix by I, or simply f and it is of the form:
100 -
010 -0
L={001 -

000 -1
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100
Thaidmﬁtymaﬁxofmaisdsmtadby.f,,tha:ia,g{n 1 n}
001

Null Matrix or Zere Matrix: A square or rectangular mairix whose each element is
zero, is called a mull or zero matrix. An mx n matrix with all its elements egual to
zero, is demoted by G, ,. Null matrices may be of any order. Here arc some

examples:

DDGOUDBDDD
[n],[nno].[ ][ }o 0000

00090 DDD 000 0

erg null matrices of order 1,1 x 3,2 x 3,2 x 2, 3 x 1, 3 x4 respectively.

Equal Matrices: Two matrices of the same order are said to be equal if their
corresponding entries are equal. For example, 4 =[a.],, ,and B = [b], , , are
equal, i.e., A =B iff a; =5, fori=1,23,.,m, j=123,.., n In other words, 4
and B represent the same matrix.

Transpose of & Matrix: If 4 is a'matrix of order mx» then an ax mmatrix
obtained by interchanging the rows and columns of 4, is called the transpose of 4. Tt
is denoted by 4°. Let 4=[a,],,, then the transpose of 4 is defined as:

4" =[d}],., where ay=a, fori=1,2,3,..,n8nd j=1,2,3, ..., m

\ D By Be By by
For example, if B=[8,]., =6y, &, by by |, then
by by by by

B =[¥,],, where b)=b, fori=1,2,3,4andj=1,2,3 e,

bl'l bI'Z b:!- b].l bz:l b!-'l

By o Ba| |Ba bu b

by by By |by by By

b;] b’ﬂ b:a bl" bil- b34

Note that the 2* row of B has the same entries respectively as the 2™ column of
B' and the 3™ row of B has the same entries respectively as the 3™ column of B ete.

B'=
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4.2 Matrix Operations

Matrix operations involve various techniques and procedures applied to matrices.
These operations are foundational in linear algebra and have applications in
numerous fields such as computer graphics, physics, statistics, etc. Here are some key
4.2.1 Addition of Matrices

Two matrices are conformable for addition if they are of the same ordsr.

The sum 4 + B of two mxn, matrices A=|a, | and B=[b, | is the arx nmatrix

C=[cy:| formed by adding the coresponding entries of 4 and B together. In
symbols, we write as C =4 + B, that is:
[c#]=[ay+b,:| where ¢, =a, +h,for i=1,2,3,.., m;j=1,23,.., n
4.2.2 Subtraction of Matrices
If A=[a,]and B = [b,]are matrices of order mx n, then we define subtraction of B
from A as:
A—B =4+(8)

= [ay]+[_bg] =[ay+(_‘bg)]=[ﬂ¢_bg] for i= 1125 3! "'!m;j= 1!2!3l reny P
Thus, the matrix 4 — B is formed by subtracting each entry of B from the
corresponding entry of 4.

If 4=|3 ? > i]ma:F 3 -1 -i],thenshnwthat
0 271 6 i 1 % -
(A+B) = 4"+ B’
Solution
1 00=1 2] [2 =1 3 17 [142 0+ -1+3  2+1
A+B=[3.T 2 S5[+[1 3 -1 4|=|3+1 143 24D 5+4
0 -2 1 6] [3 1 2 -1] [0+43 =241 142 6+(-D)
'3 =1 2 3]
|4 4 1 9
3 -1 3 5]
3 4 3
and (4d+B)f = 2‘ ‘1" 31 G
3 95
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1 3 0 2 1 3
s o1 -2 c -1 3 1
A=l 4 (|mB=4 5 5
2 5 6 1 4 -1
"1 3 0] 2 1 371 [3 4 3

R T I T R I EE )

= AREA s M a2 2 13 (1)
2 5 6/ (1 4 <1 [3 9 5

From (i) and (ii), we have (4+B)=4'+8*
4.2.3 Scalar Multiplication
Ad=[a,]Bmxn matrix and k is a real or complex number, then the product of k and
4, denoted by kd, is the matrix formed by multiplying cach entry of 4 by  that is
kA =[ka;] 2
Obviously, orderof k4 is mx n, -
4.24 Multiplication of two Ma'tcices

Two matrices 4 and B are said to be conformable for the product A8 if the mumber of
columns of 4 is equal to the number of rows of 8.

Let A=[ag]bea Zx3 maﬁxmﬂB=[bﬂ]bea3K2mattix,thenthﬂpmdmtABis
defined to be the 2x2 matrix C whose element ¢, is the sum of products of the

corresponding elements of the ith row of 4 with elements of jfth column of B. For
example, the element ¢,, of C is shown in the figure (A), that is
1 column of §

>by

by
MW
T rowol A 3y O dy

Figure (A}
€ = G By + aphy, +ay by, Thus

B, &,
AB=|:"'11 &, als] I:aubu"'ﬂmbm"'aubsl aubu"'aubm"'“ubu] @

@y Gun G8pz f: z I by + By + @by, Gybyy ARy Ay

If n is a pogitive inieger, then

A+ A+ A+ --- tyn termg =nd,




Mameaates (0

By By
by +byp@y By + B0, by t+bpan

=0yt +Hbyay  byia t bty byt 50y, (ii}

| byyay, +bypa;,  byay +bpay, By + b0,

From (i) and (ii), 48 and B4 are calculated their orders are 2x2and 3Ix3

respectively.

Notel. In general, A8+ BA

Note 2. If the product 45 is defined, then the order of the product can be illusirated as
given below:

Order of A mxn
Order of B Cnxp
Order of AB MXp
2 -1 2. =2 3
A2 (If A=(1 2 -3|andB=|-1--4 6], thencompute 42B.
1 2 -2 0 -5 5

2 -1 072 -1 o0
A, A’=4.4=|1 22 -3||1 2 -3
1.2 2|1 2 =2
(4140 -2-2+0 0+3+0] [3 -4 3
24+2-3 —1+4—6 0-6+6(=|1 =3 0@
12+2-2 -1+4-4 0-6+4| |2 -1 -2
(3 -4 370[2 -2 3
A’B=[1 -3 o0 ||-1 -4 6
2 -1 =-2||0 -5 5§
g
3
6

(6+44+40 —6+16-15
=2+3+0 —-2+1240
| 4+1+0 —4+4+10

Note: Powers of square matrices are defined as:
A =Ax A A =AxA%A

A=A x4 x4 x - ton factors.

24+15 e -5 0
—1840 |=|5 10 -15
-6—-10 5 10 -10
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4.3 Prnpertles of Matrix Addition, Scalar Mulfiplication and
Matrix Multiplieation
If A, B and C are conformable for the indicated sum or product of matrices and ¢ and
d are scalars, then following properties are true:
@ Commutative property w.r.t. additlon: A+B=8+4
() Associative property w.r.l additon: (4+ B)4+ C=A4A+(B+C)
(ill) Associative property of scalar multiplication: (cd)d = c(d4)
@v) Existence of sdditive identity: A+0 = O+4=4 [i.i“ _ m:: ]
(v) Existence of multiplleative {dentity: I4 = AT=4 (7is unit/identity matrix)
(vi) Distributive property w.r.t scalar multiplication: , (7,
(8 co(d+B)=cd+ch () (c+d)A=cd+dd
(vll) Associative property w.r.t. multiplication: A@C‘) =(AB)C
(viii) Left distributive property: A(B+C) = AB+ AC
(ix) Right distributive property: (4 + BYC=4C 1+ BC
(x) o(AB)=(cA)B=A(cB)

0

. 1 1 -1 0
[RTYnai3] FindABandB4if 4=|1 4 2|and B=(2 3 -1
w306 1 -2 3

2 0 19U -1 0
1 422 3 -1
3.0 6/[1 -2 3
[2x1+0x2+1x1 2x(-D+0x3+1x{(=2} 2x0+0x(-1)+1x3
e | Ik 1+ 4% 2+ 2x1 Ix(-1)+4x3+2x(-2) 1x0+4x(-1)+2x3
[3x14+0x2+6x1 3Ix{-D+0x3+6x(-2) 3x0+0x(-1)+6x3

Solution V.1

(3 -4 37
=ln 7 2 @
9 -15 18
1 -1 o0[2 0 1
BA=2 3 -1|[1 4 2
1 -2 3[[3 06
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(1% 2+ (-Dx14+40%x3 1x0+(-D)x4+0x0 1x1+(-1)x2+0x6
= 2% 24+ 3x1+(-1)x3 2x0+3Ix4+(-Dx0 2x1+3x2+(-1)x6
[ Ix2+(-2)x1+3x3 Ix0+(-2)x4+3%x0 Ix1+(-2)x2+3x6

1 -4 -1

=4 12 2 (ii)
9 -8 15
Thus, from (i) and (if), 4B= BA
¥ EXERCISE 4.1
1. If A=[q,L.,, then show that
Q) LA=4 () A=A , O
0 -1 2 2 1 -] Te 0 =2
2, 1¥4=(3 2 1|, B=|1 2 4|ed &5|-1 5 O |,thenfind
1 0 4 12 1|A 3 4 -1
) 4-B (@ B-C @) @-B)-C @) 4-(8-C)
i u -+ 1] AXFu 1
3. lfA=[ ;|,3=[* ]mﬂ_‘f)=’ , _],mmah-:rwthm
1 = A4 1] & | = i
(i) (4B)C=4(BOC) 0 (i) A(B+C)=d4B+AC

4, If 4 and B sre sguare mat:méﬂ of the same order, then explam why in general;
() (A+B)Y=A4A"+248+ 5 (i) (A—B)Y' =4 -24B+F
(iii) (A+B)YA—Bys 4 - B
-1 2 ¥
5. Ifd=| )P 2|, then find A+ A, A—4', AL, A'Aand (4')
“J=3 5 3

i

2. 01
6. Solve the matrix cquation 4> —54+47/-X =0 if 4=|2 1 13
1 -1 0
7. If A and B are two matrices such that A8 = B and B4 = 4, show that
A+BF=A+B.
4.4 Determinants
The determinants of square matrices of order »>3, can be written by the following
pattern. For example, ifn=13
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@, @ 4y &y @y 4y
A=|ay a, ay; | then the determinantofd =|d|=la, a, a,
Gy &y Gy T B B

Now our aim is to compute the determinants of maitrices of various orders.

4.4.1 Minor and Cofactor of an Element of a Maltrix or its Determinamt
Minor of an Element: Let us consider 8 square matrix 4 of order a, then the minor
of an element &,, denoted by M is the determinant formed by deleting the ith row

and the jth column of A(or| 4)).

& ay @y
For example, consider a square matrix 4 of order 3, A=|a,, a3 “a,
B Gy Gy
To find the minor of the element a,,, delete the first row and second colummn of 4
@, @, dg) .
- ‘an ﬂn‘ A

. Ay Gy
By 3yl Gy '

Cofm:t;}_r of an Element: The cofactor of an element a, of & square matrix A denoted
by 4, is defined by 4, = (-1)"/ M,

2 g o pye [P s a x
For example, 4, =(-1) Mu=(_l) i = —an i
4.4.2 Determinant 6f a Square Mairix of Order n =3
&, 4 G4
If A is a matfix of order 3, thatis, 4=|a, a,, a |, then:
ay @y ay
|4 =, 4y +ap4,+a,4;  fori=123
or (A =a4,tad, a4, for j=1,2,3
For example, for i=1, j=1andj=2, we have
4| = a4, +a,4; +a,4, &y
or | 4= a4, +ay Ay +a8y, 4y (id)
or |A|= 2,4, + apdy +az 4, (i)

(iif) can be written ag: 4] = a,(~1)"*2 M,, + 2 (—)** M, +a, (-2 M,,




(iv)
Similarly (i) can be written s |4 = a,,M,, — .M, +a,M;, ®
Puiting the values of M,,,M,, and M, in (v), we obtain
- By Gy By 8y 3y 4p
‘A| =t Byy Gy By By i By, By
O |4 =8, (88 — i) — Oy (A — B8y, ) + 81y (8 — 0,0, ) (vi)

or |A =a,a,a,+8,a,a, +8,0, 8, — 0,80y, — 0,0,,3,, — &Gz, (vii)
Equation (vii) is the required expansion of determinant of square matrix of order 3.

1 -2 3
[ETTTIT 4] Evaluate the determinant if =2 3 1
4 -3 2
1 -2 3
SOLCION, |4=-2 3 1
4 -3 2
vsing |4 =a, My, —a, M, +a,M,y ,We get

31 — 241 —2 3

[4=1 2“"2?‘-:* P P
161 NHACDQ)- @] +3[D(H-12]
= (6+3)+ 24— 4+ 3(6-12) =916 18 =25

1 2 3
[ET0 0 5| Find the cofactors 4, 4, and 4,of A=|-2 3 1 |andfind |4.
4 32
XTI, We first find M), M, and M, ,
2 1 1 3
an—‘4 2‘=_.4_.4=_a ,MQ—L 2=2—12 =—10
1 3
and MH=‘_2 1‘=1—(—6) =7

Thus Ay, = (DM M, = (1) =8 Ay =DM, =1(-10)=-10
A= (PP My = (1Y) =7

and ] = @,,4,; + @y dyy + Ay Ay, =(-2)8+ H-10)+ (=3X-T)
= -16-30+21=-25
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4.43 Properties of Determinants

i.  For a square matrix A4, [4| =|4"

ii. If in & square matrix A, two Trows or two columns are interchanged, the
determinant of the resulting matrix is —|4|.

iii. 1fasquare matrix 4 has two identical rows or two identical columns, then |4|=0.

iv. Ifall the entrics of a row (or a column) of a square matrix A are zero, then |4 =0,

v. If the entries of a row (or a column) in a square matrix 4 are multiplied by a
number k€ R, then the determinant of the resulting matrix is k4|,

vi. If each entry of a row (or a column) of a square matrix consists of two terms,
then its determinant can be written as the sum of two determinants, 1.¢., if

[a,+8, a, a,
B =|ay+h, a, a, | then
ay +hy 4, a,
ay+h, a, a,| |ay @y ey &y ay ay
Bl = |y +dy ay an|=\@y 6y G+ by a4y dy
Ay thy Gn Gn| Gy dn Gy By @y @y
vii. If any row (column) of a determinant is multiplied by a non-zero number & and
the result ig added to the corresponding entrics of another row (cohumn), the
value of the determinant does not.change.
viii. 1fa matrix is in triangular form; then the value of its detarminant is the product
of the eniries on its main diagonal.
(ST We shall define triangular matrioes on page 61. |
X a+x b+c
PRI 6| Without expansion, show that (x b+x c+a|=0
X c+Xx a+b
EIITTTN, Adding the entries of C, to the corresponding entrics of G,
* a+btc+x b+e
LHS=|x a+b+c+x c+a
x a+b+c+x a+b

1 e (bytakingxmnnmnﬁ‘omq ami)

= 11
x(a+b+c+x}1 y c:—-: (@ +b+c+x) commen from C,
a

= x{a+b+c+x)-0 (- €| and C, are identical)
=0=R.HS
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4.5 Adjoint and Inverse of a Square Matrix

a, a, 613] A, A, Au]

Let A=|ay a, a, |, thenthe matrixofco-factorsofd=|4, 4, 4,|,

@, Gy & Ay, Ay Ay
All Aﬁl Aﬂl
endadj 4= |4, 4, An]
A, A, 4,

Inverse of a Square Matrix of Order = 2 3: Let 4 be a non singular (J4| # 0) square
matrix of order n. If there exists a matrix B such that AB = BA=[,, then B is called
the multiplicative inverse of 4 and is denoted by 47", It is obvious that the arder of
A7'i8 mxn.
Thus, A4 =1 and A7'4=1,
If A is non singular matrix then

41

A MM'M

1 02
Find A7if 4=|0. 2" 1|.

-1 1
Weﬁrstﬁndth#cﬁfammofthee]ementsofd.

w2 1 6 W
A=CDT | =EDED=1
A”:(_I)M‘: -21‘=1'(°'2)=‘2- Ay = (1™

‘=1-(2+1)=3, A= (D"

1
1

0 2
iy 1‘=(—1)(0+2)=—2

2 1 0

_ g1yt
Az= (D i

‘=1-u—z)=—1. A= (—1)“‘

=(-1}-1-B)=1

B S
Pt

A= T =1 0-9)=—4, 4,=(-D*

1 2
A 1‘=u{—1){1—(:-)=—1

2 O = b

=1:(2-0)=2

e T ]

Ay=(1y"




<s>

(4, A, 4 [3 1 -2
Thus  [Alha=|4y 4 4s|=|-2 -1 1
4 4, 4] |4 1 2

Mameaates (0

i -2 4
and edjd=[LL,=1 -1 -1 (: Ay =4, fori,j=1,2,3)
2 1 2
Singe 4] = a4 +apd; + a4,
= 13)+ 0D +2(-2)
= 3+0-4=-1
3 -2 4] [-32 4
So A‘1=|—:!|ade=il 1 -1 -1f=-1"1 1
21l 22 -1 -2
P EXERCISE 4.2
1. Evaluate the following determinants;
1 -2 4 ath a-b « 2x x x
@ [3 -1 -3 @ V' a ath a-b Gi) |y 2y y
-2 3 2 la-b a a+b z z 2z
;- Withuulexpmsiunnﬁuﬂi that:
7 8 9 5 6 -1 -a 0 &
M 5 6.7|=0 (i 2 2 0|=0 (ii|0 —¢/=0
2.3 4 2 -8 10 ¢ -b 0
I mtn 1 2 1 3x be a & | & &
Gv) m n+d 1|=0 () 2 3 9x|=0 (vi) |eca b B|=]1 & F
n l+m 1 3 5 15x ab ¢ | 1 & ¢
3. Using properties of determinants, show that:
3 5 0 3140 a+x a4 a
@ |5 25 10=251 1 2 (i) | a a+x a |=x(a+x)
7 25 1 7 51 a a atx




(v)

(vi)

(vid)

(viii)

(ix)

(x)

(=)

(xid)

<o> Mt

1 x yz€l |1 x ¥ 1 x X
1y =1y 5 @ 1 » ¥|=&-yNry-zXz-x)
1z xy( |1 z 2 1z 2

1 1 1

a+l B+l e+l |=(a-b)(b—c)(c—a)
(a+1) (b+1) (e+1)

a+b c?

a b+ ot =4

b ¥ f+d

a b ¢

b+e c+a a+b
ag+bh b+ec c+a

=a*+b +e&' —3abc

Z+E a [ ]
b b+t b
[ C c+i

a-b—-c¢ 2a 2a
2b b—c—-a  2b
2c 2 7 c-a-b

={a+bFc+r)

=(a+b+cy

y+z zt+x xty

¥ oy 2z |=(x+y+2E-p0-2)(z-x)
ey 2
1 1 1

a+1 b+l c:2+l=(a—b)(b—c)(c—a)(ab+bc+m—l)

a+a P+b +c

1+a 1 1 1 a a*—bc
1 1+b 1 |=abet+ab+betea (xii) (1 b F—cal=0
1 1 1l+¢ 1 ¢ &—ab
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2x+3 x+2 x+a

(xiv) |2x+5 x+3 x+b=0 ,where2b=a+c
2x+7 x+4 x+tc
a b c

(x¥) ¢ a b=(a+b+c)(a+bm+mz)(a+bm’+m:),wheren:isa.u
b ¢ a
imaginary cube root of unity.

1 2 -3 5 -2 5
4, IfA=|0 -5 0 |and B=|-3 -1 4|, then find:
-2 =2 7 -2 =1 2

() Asdpdyond |4 (D) By By, B, and |5
5. Find the vahies of x ift
2 1 = 1 x-1-3 1

11
M [-1-4 3=5 (i |1 r¥l 2/=9 @) 2 x 2/=0

x 1 0 423 = 36 x

T3 2 31

6. Find |A4'| and | £4)if: () ﬁ:[z . 3] i) A=|2 2
1 3

7. 1f A is a square matrix @forder 3, then show that |54 =& | 4.
8. Find the values of Wif 4 and B are singular.

4 23] [2 45
A=|7 A8 B=|1 -2 1
2.3 1 2 2 0
i ~F
9. Findthemverseof A=|—5 0 4 |andshowthal A"4d=1,
|5 40
10. Verify that (4B) = B* A" if:

_ 1 =] P S b2 1 -3
®4=|, , || md B=|-3 2| @ 4=|1 4|md B=|
0 1 2 1
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4.6 Elementary Row Operations on a Matrix
Usually, a given system of linear equations is reduced to a simple equivalent system
by applying clementary operations which are stated as below:

() Interchanging two equations.

(ii) Multiplying an equation by a non-zero number.

(iii) Adding a multiple of one equation to another equation.
Corresponding to these three elementary operations, the following elementary row
operations are applied to matrices to obtein equivalent matrices:

(i) Interchanging two rows

(i) Multiplying a row by a non-zero number farives 4 and B

(iii} Adding a multiple of one row to another row : bylfB van
Notations that are used to represent row operations for (i) N s Finike apply mE.nf
to (iii) are given below: operations on 4.

« Interchanging R and R, is expressedas R, & R,,
o ktimes Rjis denotedby KB, 5 R, 5.0
» Adding ktimes R, to R, is expressed as R+ kR, — R/
(R is the new row obtained after applying the row operation).
For equivalent matrices 4 and B, we write 4 & B,
HARBthenB R A
Upper Triangular Mairiz: A squire mainx A=[a,]is called an upper inangular
matrix if all elements below the principal diagonal are zero, that is,
a,=0forall {3}
Lower Triangular Matrix: A square matrix 4 =[a,]is said to be lower triangular
matrix if all elements above the principal diagonal are zero, that ik,
ay.= Oforall i< j
Trisngular Matris: A square matrix 4 is named as triangular matrix whether it is
upper triangular or lower triangular. For example, the matrices

1 000
o2 2 3 200
0 1 4|and i i %0 are triangular matrices of order 3 and 4 respectively.
%98 -1 2 3 1

The first matrix is upper triangular while the
second i8 lower triangular,
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4.7 Echelon and Reduced Echelon Forms of Matrices

In any non-zero row of & matrix, the first non-zero eniry is called the leading eniry of

that row.

Echelon Form of a Matrix

An mx s matrix 4 is called in echelon form if:

(i) The number of zeroa before the leading entry is greater than the number zeros in
the preceding row.

(ii) Every non-zerc row in 4 precedes every zero row (if any).

(iii) The first non-zero entry (or leading entry) in each row iz 1.

01 -2 4 1 2 3 4
Thematrices |0 0 1 2|and |0 0 1 2| areinechelonform
00 0 0 00 0 1

Redoced Echelon Form of o Matriz: An mx nmatrix A is said to be in reduced
{row) echelon form if the first non-zero entry (or leading entry) in R liesin C,, then
all other entries of C; are zero.

010 4 1 2.0

The matrices [0 0 1 2mdn 0“1 0 |are in (row) reduced echelon form.
000 00 0

2

1

3

Hgg

0

-1 9
LT 8| Reduce —1 2 -3 |to (row) echelon and reduced (row) echelon
' 3 2
form.

2.3"-1 9 1 -1 2 -3
BT M -1 2 3|, &2 3 -1 9| ByROR

3 1 3 2 3 4 3 2

1 -1 2 -3 11 2 -3

Bo 5 —5 15| WEACDRSEK Rlg 1 g 3| Ly p
0 4 -3 11| WBORSE g 4 3 1) f

1 -1 2 3] 10 1 0

Bo 1 -1 3| R+r,-8 Blo1 -1 3|gurnx
00 1 -1 00 1 -1
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1 00 1
RBlo 10 2 By R, +(-1)E; - R
0 0 1 -1 end R, +1.8, 5 R,

1 -1 2 3 100 1
Thus |0 1 -1 3 | and [0 1 0 2 |are(row)echelon and reduced (row)
0 0 1 -1 001 4

echelon forms of the given matrix respectively.
Inverse of 8 Matrix: Let 4 be a non-gingular matrix. If the application of elementary
row operations on 47 in succession reduces A to 7, then the resulting matrix is 7247,

2 5 -1
| T T8 Find the inverse of the matrix A=|3 4 2
1 2.-2
25 -1
[4=3 4 2|=2(-8—4)-5(-6-2)=1(6—4)=-24+40-2=40-26=14
1 9 =2
As |40, 50 A is non-singular.
25 -1:100
Appending I,on the right of the matrix 4, we have |3 4 2 010
: 2 2:001
Interchanging R, and Bywe get,
12 =2:001 1 2 22:00 1
34 2 501 0(80-28:01 3 WEEIRK
2 5% 100 |01 3:1 0 2 WECIR-EK
1 ,
By By =3k, wa get
12 -2:0 0 1 1¢ 6 :0 1 =2
: 1 3 |g . 1 3 . .
01 4:0-— " |Blg1-4:0— - |[whetDBoE
2 2 2 2 |mdR+{R SR
01 3 i1 0 =2 . 1 7
00 7 1 = -—
B 2 2
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106 0 1 -2 (100 _g; 1
01 4:0 —L 3 (Bl., .4 _3 _1BVR+CORK
2 z 7 14 7 |and R, +4R, >R
11 1 1 1 1
oo 1~ L -1 111
s 7 14 2 | _001 7 14 2
_6 4
7 7
Thus, the inverse of 4 is 4 3 1
7 14 2
1 1 1
7 14 2

Rank of g Matrix: Let 4 be a non-zero matrix, [f-7 is the number of non-zero rows
when it is reduced to the echelon form, then r is called the rank of the matrix 4.

-1 2 3
Find the rank of the matrix. [2 - 0 7 -7

3 1 12 -11

ByR,+(-2)R > E,
and R, +(-3)& — K

-3

2 371 1 4
7 -7 |Blo~2
12 -11f. |0 4
2 % 1 -1
3

alipg 1 R 1
s 5 BT oRoR F0 ] S [BYRAHCOR SR

0 46 -2 0 0 0
Asthemniﬁgrufnon—zmmwsisthmﬂ:egivenmﬁxismducedwechﬂm
form, therefore, the rank of the given matrix iz 2.
4.8 System of Non-Homogeneous Linear Equations
Three lingar equations in three varigbles such as:

ax+by+cz =d,

axthytez =d, )

ax+hy+eoz =d,
is called a gystem of non-homogeneous linear equations in the three variables x, y and
z, if constant terms d;, 4, and &, are not all zero.

2 3
S |
& -2

1
Solution | PR

i1

1

=]

Rlp 1

=T JRW
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if the aystem has 8

unigue sohition or it has infinitely many solutions,
Inconslatent: A system of linear equations is said to be inconsistent if the system has
1o solution.
Now we will solve the system of non-homogeneous linear equations with the help of
the following methods:
(i) Using reduced echelon form
(ii) Using matrix inversion method
(iii) Using Cramer's rule
4.8.1 Reduced Echelon Form
There are following steps to solve & system of non-homogeneous linear equations (i):
(i) Convert to sugmented matrix
a b ¢ |d
i.e. a & o |d,
a b ¢ |d
(ii) Convert to reduced echelon form
(ili} Solve by back substitution

Solve the following and explain a consistent and inconsistent system:
() 2Zx+5y-z=5 {ii) x+y+2z=1 (i) =x-y+2z=1

Ix+dy+2z=11 2x—y+7z=11 2x—6y+5z=T
x+2y—-2z=-3 o 3x+5y+4z=-3 3x+5y+d4z=-3
25 -1: 5
EINTTION (i)  The augmented matrix of the given systemis (3 4 2 : 11
1 2 -2 : 3

We apply the elementary row operations to the above matrix to reduce it to the
equivalent reduced (row) echelon form, that is,
2 5 -1 : 5 1 2 -2 : 3
34 2 ! 11| K3 4 2 ! 11| ByReR
1 2 =2 ¢ =3 25 -1 : 5
1 2 2: -3 1 2 -2 : -3
B0 -2 8 ! 20 |ByR+(-3)R >R R|0 -2 8 } 20 (Bys+zr—r
2 5§ -1: 5 01 3 : 11
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1
2
1 2 =2 -3 1 6 : 17 .
g0 1 —4 i -10[8l0 1 -4 i -10 z::tﬂzjz
01 3 :1|loo 72
1o 6 w] L LR P
RO 1 -4 0By k& RO 102 ST
0o 1 i 3| 001: 3 N T

Th;m, the solution is x=-1,y=2andz=3, therefore the given system of linear
equations has unique solution and it is consistent,

1 1 2+ 1
(ii) The angmentcd matrix of the given systemis (2 =1. 7 : 11
305 4 : =3

11 2% 1711 2 i1
2 -1 7: 1|0 -3 3 i 9 |Adding (-2, toR, md (IR, to R,

3 53 4: 3 0 2 2 : 6

112 :1 10 3: 4
I (i T L - +HDE - &
Weget, R0 1 1! 3| By—sR—R R01-1:-3| B&
3 »
02-2:6 000 ;:o| WECDESE
The piven system is reduced fo equivalent system
x+3z=4
P=z=-3
0z=0

The equation Qz= Dis satisfied by any value of z.
From the first and second equations, we get
x=-3z+4 {a)

and y=z-3
As z iy arbitrary, so we can find infinitely many values of x and y from equations (a)
and (b) or the given system, is satisfied by x=4-3¢, y=1-3 and z=1 for any real
value of .
Thus, the given system has infinitely mamy solutions and it is consistent.

1 -1 2 ;1
(iii) Them@nmtedman'ixufﬂluystemis[z -6 5 : 7]
31 5 4: 3
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2—65; 7 &0 -4 1 5 | Adding (-2)R, to R, end (-3R) to R, .
3 5 4:-3| [0 8 2: -6

We have, ) )
7 1
1-1 2§ 1 10 o i-5
5f.'ll—li—EB_l 501_1:_2 By R+ LR R
T 4" 4| wdR (R R
08 =216 00 0 ! 4 |

Thus, the given system is reduced to the équivalent systen;

e+ 7oL
4 &

glg 8
4 4
0z=4

The third equation 0z= 4has no solution, so the system as a whole has no solution.
Thus, the system is inconsistent.
memthltmm—eofﬂaﬁmﬁnﬁ).thn(mw}mkufﬁnwgmmmdn-m:mdﬂm
meﬂmtmﬂunfﬂm:y:ﬂnuﬁeumﬂ,thﬁi&Swhnhmuquﬂhﬂﬁmmhuufﬁevmbbum
the systemn (i
MWégthahwm@mucmmtmdm;mmmﬂmwufﬂn
coefficient matrix is the same au that of the sugmented mabrix of the system and equal to mmber of
‘wariables, (")

In the ease of the system, ﬁbmkdﬂz:mcﬁmmnmmthﬁmuﬂutaﬂhbwpﬂmhd
mllm.ufﬂ:uymmmh Mhhﬁmﬂ:ﬂmmhﬁufmblummmfﬁ}
Thm.mohuwﬁn;\n:ymmmﬂﬂmﬂhumﬂnﬂlymmhﬁnmﬂﬁomhoﬂm
coefficient maitix and the angmented matrix of the system are equal but the renk is leas than the number
ufvmmmm?mym
Inﬂl.um:b’ém:uyﬂm(m].wmhtﬂlnankufﬂmmcﬂinﬂmmmmtoqnalhﬂumkuf
the supmentad matrix of the system,

Thus, we obsarve that a syslem i inconsistent if the ranks of the coafficient matrix and the sugmentad
| malrix of the system are different.

4.8.2 Matrix Inversion Method

The matrix inversion method is a way to solve a aystemn of linesr equations using the
inverse of a matrix.

r

X -2 t+x =—4
AT 12| Use matrix inversion method to solve the system 2x —3x, +2x,=—6

2y +2e+x =5




Thﬂmnhixfnnnufﬂlegivenaystemin
1 -2 1][x] [
2 -3 3||x|=|-6
2 2 1llx 5

o AX=38 @
1 21 x it
Where A=|2 -3 2|, X=|x, |and B=| -6
2 I 1 X 5
1 =21 1 =2 1
As ‘A|=2 -3 2[ =0 1 0 ByR+-JR=E
2 21 2 2 1
Expanding by R, we have
11
=(—1}lz"“22 1‘=1—2=—1,ﬂ131:is,

| 4| 0, so the inverse of A exists and (i).can be written as

X=4"B (ii)
Now we find adj 4.
~7 210
> [4l.-[4“ |
-1 0 1

Ay =T, 4y =24, =10, 4y =4

sl P S ST
7 4 -1
So adjA=|2 -1 0
0 6 1

i i -7 4 -1 [7 -4 1
and A“=m adid=—12 -1 0|=|-2 1 0
0 6 1] [-10 6 -1
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| —4 7 <4 1]|[—4] [-28+24+5
=A-1 -6 |=| =2 1 0 -6 |= 8-6+0 1 i.ﬂ.,
| 5 -10 6 -1|| 5 40-36-5

Thus, the solution set 18 {(x), x,, x)} = {(1, 2, 1)}
4.8.3 Cramer’s Rule
Consider the system of equations,

Gy ¥, + 85X, + @y =by ]

g oM N MR
i

Lo -

e — |

By + 8%y + A% =B, @)
%, + diyy Xy + %, = by
These are three linear equations in three variablesx,x,,x, with coefficients and

constant terms in the real field R. We wiite the above systern of equations in matrix
form as:

Ax =78 (i

% B

where A=[a)pi X=|x, | and B=|p,
%, b,

We know that the thatrix equation (ii) can be written as: X=A4'B (if 4 exisis)

We have alsiatly proved that 4= 1 adj 4

|4
A, 4, 4,
and adj A=[L =4, 4, 4, Cody=4,)
A, Ay Ay
X { 4, 4, 4|4 1 A+ 4ub, + 45
Thus | x, =H 4, 4, Ag|| b =M AB + Aphy + A b,
% Ay Ay Ay || b Ay + Apb, + Ayh,




it O B P e

'411:.+A‘111|:,+A,1b,'
A
i | & | 42q+ﬁzwh,
B ah s Ak b,
4
h a, a,
b, @y ay
Hence xl=blAll+bzA21+b3A!1 = % e I (ﬁi}
4 4 X
a, b a,
@ b ay
_h4,+b 4, +04, |4 B .
B 4 TA o
ay G B
ay @y b
_bA, b4, +h Ay 0 a4 B
X A| |4 )

The method of solving the system with the help of results (iii), (iv) and (v) is often
referred to as Cramer’s Rule.

I +x,—-x,=—-4
[ETrI13| Use Cramer’s rule to solve the system, x,+x,—2.::5=—4}
% +25-x%=1
3 1 -1
O Here|d|=|1 1 -2|=3(-1+4)—1-(-1-2)-1-(2+1)
-1 2 -1
=9+3-3=9
-4 1 -1
-4 1 -2
%, z=l! ;'! -1 =-4(—1+4)-1(e;+2)—1(-s—1)
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_-12-6+9_-9
9 9
3 4 -1
1 -4 -2
-1 1 =1 34+2)+4(-1-2)-1(1-4)
RETTy T 9
=1!!—12+3=2=1
9 9
31 4
1 1 -4
ol 2 1 _3(+8)-10-4)-42+D) _27+3-12_18
5

9 9 9
Hence x=-1x=1x=2 '
Thus, the solution set ia {(x,, %, %,)} = {(-1, 1.2)}
4.9 System of Homogeneous Linear Equations
The system of following homogencons lineat equations:

&%+ 8% + 8%, =0]

Gy + 85X, + X, =00 D

@y % + 835X, +ay =0
is always satinfied by x; .=._'Q.,:-:'2 =0 and x, = 0, 5o such a system is always consistent.
Trivial Selution: The golution (0, 0, 0} of the above homogeneous system is called
the trivial solution,
Nen-Trivial Splution: Any other solution of system (i) other than the trivial solution
is called a non-irivial solution.
4.9.1 Sclution of System of Homogeneous Linear Equations by

Gausgian Elimination Method

Gaussian Elimination is a systematic method for solving systems of linear equations,
named after the German mathematician Carl Friedrich Gauss, It involves performing
a series of row operations on the gystemn's augmented matrix to transform it into row-
echelon form. Once the matrix is in this gimplified form, the solution to the system
can be determined through back substitution. This method is widely used due to its
efficiency and clarity in solving linear systems,
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Selve the following system of equations by Gaussian Elimination

mﬂhod.
x+2y+z=0
2x+ 3p+ 4z=0
4+ 3p+22=0
EXTTTTY, The sugmented matrix is
1 2 1|0]
4=|23 4|0
43 2|0
1 2 1|0
Elo -1 2|0|ByR,+(-DR > R.endR, +(<4)R > R!
0 -5 -2|0]
1 2 1]0]
= Blo 1 -2|0(By-DR, >R,
0 -5 —2|0]
1 2 10
=> R0 1 —2|0|ByR+5R, >R,
0 0 -12(0
1 2 1/9
> Rlo 1 =30 By[;—;J& R, (Rank of 4 = 3 = number of varibles)
0 00 1|0
The mairix 18 it row-echelon form.

By back-substitution, from the third row, z=0.
From the second row: y—2z=0
¥—2(0)=10
y=0
From the first row, x + 2y + z =0, substituting y = 0 and x = 0, we have
x+2(00+0=0
x=0
Thus, the system has only trivial solution, i.e., (x .y, z) = (0, 0, 0).
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Solve the following system of equations using Gaussian Elimination
Met'lmd

%+ 5+ % =0
X— X+3x =0
% +35-x =0
Theargummtedmalrb;is
1 1 1|0
4,=1 -1 3|0
1 3 -1|0
1 1 1]0
£lo -2 2/0| ByR,+(-DR »&, and R+(-DR S R,
0 2 -2/0 |
1 1 1/0]
= £lo 1 -1/0 By[—l)&—bfi‘,’
0 2 -2(0 2
1 1 1|0]
= #®|o 1 -1/0| ByR+(-2)R, >E (Rank of 4 <number of variables)
0 0 0]0]

The matrix is in row-echelon form
Thug, the above system is reduced to the equivalent system of equations
x gyt =0 ©
X—% =0 (iD)
Ox, =0
From (i) and (ii), we get
X =%~ (i)
. =%
Substituting x, =x, in (ii), we get
R
= X =-ix (iv)
As x, is arbifrary, so we can find infinitely many values of x; and x, from (jii) and (iv)
or the system is satisfied by x, = -2¢, x, = # and x, =1 for any value of ¢.




From above examples we observe that:

Rule — I: Homegeneous system of linear equation has only trivial solution if
rank of 4 = number of variables.

Rule — IT: Homogensoug system of linear equation has non-trivial solution if
rank of 4 < number of variables.

4.10 Applications of Matrices in Real World
Matrices play a crucial role in solving real-world problems across various fields, In
graphic design, they help manipulate images through u'tusformatmns]:lke scaling,
rotation, and reflection. Dats encryption and cryptography use mattices for secure
use¢ matrices to model and predict earthquake wave behavior. Geometric
transformations, suahash‘anslaﬁonanddﬂaﬁun,relyunmaﬁmtomodifyshapesin
computer graphice. Additionally, social network amalysis leverages matrices to
represent and analyze relationships between mdnnduals, identifying key influencers
and connections in a network.
Transformation or Reflection Matrix js a mathematical tool that represents the
reflection of & point or object across a mirror line in a coordinate plane. [t's a8 matrix
representation of a reflection transformation. In two dimensions, this typically meana
reflecting across the x-axis, y-axis or @ line such as y =x.

o
_ﬂ _1_
-
= 0 1_

To reflect & matrix over the x-axis, we have to multiply it by

To reflect a matrix over the y-axis, we have to multiply it by

01
To reflect s matrix over the line y =x, we have to multiply it by [1 D]

A ftriangle has the vertices 4(2, 3), B(-1, 4) and (3, —2). Find the
vertices of the reflected triangle over the x-axis by using transformation matrix.
EZITTTT, To reflect a point across a certain axis or line, we have multiply the point
as a column vector by the corresponding transformation matrix,

Here, to reflect the given points over the x-axis, we use the transformation matrix

2.




Write Ihe points as column matrices

BT

s ot 1332

0 -1§|3 0-3 3

e[,

e 1 L PR

Thus, the vertices of the reflected triangle are 4°(2, -3), B'(-1, —4) and C'(3, 2).
Coding is the process of converting a8 message into a specific format using a code. A
code i8 a system of aymbols, words or signals used-to represent other words or
meanings. It's often used to hide the actual meaning of'a message.

To decode a message, we multiply coded matrix by the inverse of the given matrix.

1. 2
[BFTE17| Use matrix 4 = [ ]tn encode the message: ATTACK, where

3 1
letters A to Z are corresponding to the'numbers 1 to 26,
Solution §s--
A B C D B F G H I I K L M
1 2 3 4 5 4] 7 8 8 10 11 12 13
N C P Q R 5 T u v W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Divide the letters of the message into groups of two.
AT TA CK
Asgign the.numbers to these letters and convert each pair of numbers into 2 x 1

- A1 - BT G-

: = = ) 2] |
Sn,memessa,gemZXImatnoesm[zﬁ][l][”]

Now to encode, we multiply, on the left, each mairix of our message by the matrix 4.

NN




20 + 2] _[22
1] |60 + 1] |61

[1 2] [3' 3 + 22] [25

(3 1 [11] |9 + 11]| |20]
_ 41][22][ 25
So, the degired coded message i
N [23] _61] [20]
WV EXERCISE 43 _{
1. Find the inverses of the following matrices by using row operatibps:
2 6 -3 1 2 -1 1 6.2
@0 -2 0 G |0 -2 8| () {2013 0
-2 5 6 1 0 2] _ [0-11
2. Find the mok of the following matrices: |
ozl @GP el YT
3 1 4 -2 i
8 1 —1 2 5 2 -3 3
3. Solve the following system;s'uf'l.'incﬂr equations by Cramer’s rule:
&+y-z=1| ' x+2x,—3x,=0 2% — 2 +x,=1
M x-y+2z=3¢ " (@) -ntu=>5; () n+2n+2%=2
3x+2y+z=4 2% +3x,+2x,=3 x—2x,—x=1
4. Solve t_he fpﬁd'wing systems of linear equations by matrix inversion method:
x=2y+z=—1 2%+ x,+3x,=3 xty=2
(i) 3x+y-2z=4 (i) x+3x,-2x,=0) (iii) 2x-z=1
y-z=1 —3x—x,+2n=4 2y-3z=-1

5. Solve the following systams by reducing their sugmented matrices to the
echelon form and the reduced echelon forms:

*+2x,—2x,=-1 +2y+z=2 X +4x,+x,=2

) 2x+3x+x,=1 ; G) 2x+p+2z=3 (iii) Zx +x,—2x%,=9
5% +4x,-3x% =1 2x+3y—2z=7 Ig+x,—x=12




10.

11.

<.n,> T _:

Solve the following systems of homogemeous linear equations by using
Gaussien elimination method:

x+4y-2z=0 x+4x,4+2x,=0 x+2x,—-x=0
) 2x+y+5z=0 (i) 2x+x-3x%=0) (i) x-x+55=0
Sx+2y+8z=0 3 +2x,—4x,=0 2x +x,+4x, =0

A triangle has vertices at 4(4,1), 8(-2,5) and C{0.—3). Find the vertices of the
reflected triengle over the y-axis using 8 transformation matrix.

( ‘::lf;m 0 0
The point 4 is mapped to (30, 20, —5) by the suhngmam;@g -5 0],
4“\ 0 0 -5
Find the coordinates of 4. /\"Ci'
[Hint: If 4 is mapped to A’ by scaling matrix £, then P4 = 4"]

Find the equauonafthemgeofﬂmcm%nhequauuny x* under the
transformation with a.ssocmledma.h‘m

1 0 I%Q

Use the matrix A = |2 -1 3tncnmdetl1cmmsage:KEEPITUP,whm

0 C}(\z

letters A toZm g to the numbers 1 to 26.
\a,. .

~\ 117257 [22

Decode the'u‘.l'tzpﬂage 20 || 10 || 14 | that was encoded using matrix

gi_) 43| 41] |41

A=1 0 1|, where the numbers 1 to 26 are comesponding to the lstters
21 1

Ato Z , and 27 is representing space or =",




Partial Fractions

INTRODUCTION

We have learnt in the previous classes how to add two or more rational fractions into a
single rational fraction. For example,
. 1 2 3x
= -
S i
2 1 3 55 +5x-3

+ =+ =
s+l xH)Y x—-2 (x+DH{x-2)
In this unit we shall learn how to reverse the order w (i} and (ii) that is to express a
single rational fraction as a sum of two or more gingle ratignal fractions which are
called Partial Fractions.
Expressing & rational fraction as a sum ot‘p‘artial'fmctions i8 called Partial Fraction
Resolution. It is an extremely valuable tool in the study of calculus to decompose a
complex rational fraction into a sum-of simpler fractions.
An open sentence formed byusi:;gtﬁe sign of equality ‘=" is called an equaton. The
equations can be divided into the following two kinds:
Conditlonal equation: Itis an equation in which two algebraic expressions are equal
for particular values of the variable e.g,,
(8 2x=3isaconditional equation and it is true only

; 3
if x==.
72

and (i)

For gimplicily, & conditional
equetion is callad an equation.

(b) x*+x—6=0is & conditional equation and it is
true forx =2, —3 only.

Identity: It is an equation which holds good for all valies of the variable e.g.,

(a) (a+b)x= ax+bx is an identity and its two sides are equal for all values of x.

)  (x+3Xx+4)=x"+Tx+12is also an identity which is true for all values of x.
For convenienge, the symbol “=" ghall be used both for equation and identity.




5.1 Rational Fraction

An expression of the form Z((xi , Where P{x) and O(x) are polynomials in x with real
X

coefficients and {Xx) # 0, is called a rational fraction. A rationz] fraction is of two

types.

3.1.1 Proper Rational Fraction

A rational fraction }Q_,[@x))- is called a Proper Ratlonal Fractlon if the degree of the

polynomial Px) in the numerator is less than the degree of the polynmnl {Ax) in the

denominator, For example, 3 -zx_snnd 93;3 are proper rational fractions or
x+1 x*+4 x'—1

proper fractions.
5.1.2 Improper Rational Fraction

A rational ﬂmﬂm% is called an Improper Rational Fraction if the degree of the

polynomigl P(x) in the numerator iz equal to or greater than the degree of the
polynomial O(x) in the denominator.

x  (x—2x+D -3 an!:1.:I:z'—J|.'1'L+;\:+l
2x-3 (x=D)(x+4) 3x+1 245
are improper rational fractions or improper fractions,
Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

For example,

For example, B'ﬂ_'kl is an improper rational fraction.
=2 3x+6
-2132% +1

By long division we obtain 3x2+l=3x+ﬁ+£,ﬂ:latisau % 35

x-2 x-2 :I:3.x2—l'

Fox

improper rational fraction 3x2_;1 has been reduced to the sum 6x+1
ufapulynomial3x+6andapmperraﬁmalﬁacﬁmﬁ. 0%

When a rationsl fraction is separated into partial fractions, the result is an identity;
1.e., it 13 true for all values of the variable in the domain of the identity,
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The evaluatmn of the coefficients of the partial fractions is based on the following
theorem:
“Jf two polynomials are equal for all values of the variable, then the
polynomials have same degree and the coefficients of like powers of the
variable in both the polynomials must be equal”.
For example,
If px* +q —mx+b=2x"—3x" —4x+5, Yxthenp=2,g=3,a=4and b=5.

5,1.3 Resolution of a Rational Fraction %im Partial Fraetions
X%

P(x) .

Following are the main points of regolving a ratiomal fraction (x)mto partial

fractions:

(i) The degres of P(x) must be less than that of O(x). If not, divide and work with
the remainder theorem. . '

(ii) Factorize the denominator O(x) into its irreducible factors, write the rational
fraction into partial fractions.

(iii) Multiply the identity with the defipminator of left hand side,

(iv)  Equsate the coefficients of like terms (powers of x).

(v)  Solve the resulting equations for the coefficients.

We now discuss the following cages of partial fractions resolution.

Case I: Resolution of %lﬂtﬂ piirtial feaethim Wi 006l oily mon-

x

repeated linear factors:

The polynomial Q(x} may be written as:
Ox}=x—a){x—ay) ... (x—a), where g £a,=....#4,
PH_ A4, A v B s enidenity.
Nx) x-¢ x—a, x-a,

Where Ay, 43, ..., 4, are numbers to be found.

The method is explained by the following examples:

Tx+25 H—— :
1] Resolve ————— D into partial fractions.

75425 A B
e P~y |
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Multiplying both sides by (z -+ 3) (e -+4), we get
Tx+25 = Ax+4)+B+3)

= Tx+25 = 4Ax+44+Bx+38
= Tx+25 = (A+Bx+44+3B
this is an identity in x.

So, equating the coefficients of like powers of x we have
7T=A+B and 25— 44+38

Solving these equations, we get 4A=4 and B=3.

Hence the partial fractions are: i+i.
r+3 x+4
Alternative method
Suppode Tx+25 A % B
{(x+3Xx+4) x+3 x+4
= Tx+25 =A(x+4)+B{x+3)

As two sides of the identity are equal for all valucs of x,
Letusputx=-3 and x=-4init
For 4, putting x + 3 =0 i.e., x = -3, weget
—21+25=4(-3+4)
= A=4
For B, putting x + 4 =0 i.e.,x=—4, we get
—28+25—=H(-4+3)
= B=3
et . 4 3
Hence the partial fractions are: ——+——
x+3 x+4
* —10x+13
e (x-1¥x* —5x+6)
EINTTT0N, The polynomisl x* — 5x + 6 in the denominator can be factorized end its
factors arex— 3and x— 2.
¥-10x+13 _  x*-10x+13
(x-x*—5x+6) (x—{x—2Xx—3)
#-10x+13 _ 4 ., B C
{(x-Dx—-2)(x-3) x-1 x-2 x-3

into partial fractions.

Suppose
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= -1+ 13=4(x—-2DEx-3)+Blx— 1}{x— )+ Cx—1}x—2)
which is an identity in x.
For A, pultingx —1=01¢,x=1, we get
(IP-1D+13 =4(1-2)(1 -+ B(1-1X1-3)+C(1-1}1-2)
= 1-10+ 13 =A(-1) (-2) + B(0) (— 2) + C(0) (1)
4=24
A A=2
For B, putting x — 2 = 0 ig., x = 2, we get
(2P - 10(2) + 13 =A(0) (2-3)+ B2 - 1) (2-3) +E(2 - 1) (0)
= 4—-20+13 =8(1)(-1)
= -3 =-5
B=3
For C, puiting x — 3 =0i.e.,x=13, wa get
Br-103)+13=43-2)(+B3-1D)(O)+CE-1)(3-2)

= 9—30+ 13= C2)(1)
= _8=2C
C=4

¥-10x+13 (-2 L3 4
" (x-Dx*-53+6) x-1 x-2 x-3

) WHx—x-3 : :
[A143] Resolve 2 3Ye—]) into partial fractions.

Hence

24w -3 i3 an improper fraction so, first transform it into mixed
x(2x+3)(x-1)

form.

Denominator = x(2x + 3)(x — 1)= 22 + 2 - 3x 1

. Dividing 22 +x—x—3 by 22 +x% - 3x, 20 +2*-3x)25° + 5 - x-3

we have _ngix’¢3x

Quotient=1 and Remainder = 2x—3 2x—3
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204+ -2-3 _ |, 23
x(2x+3¥x—-1) x(2x+3)(x-1)

2x-3 A B C

PEE x(2x+3)(x-1) x 2x+3 =x-1
= 2x—3 = A2x+ D(x- 1)+ Bx) (x— 1} + Cix) (2x + 3)
which is an identity in x,
For 4, putting x = 0 in the identity, we get A=1
For B, putting 2x+3=0 =>x=—% in the identity, we get B:.—}
For , puiting x — 1 =0 = x =1 in the identity, we get %=:2%
:-_ —
ence,le"'x -3 _,,1 B 1

#(2x+3)x-1)  x 5(2x+3) 5(x~1)
Cage TI: When O(x) has repeated linear factors:
If the polynomial (}(x) has a repeated linear factors (x — a), » 2 2 and » is a positive

Px) may be written as the following identity:

O(x)
P(x) o A + 4 o+ +7A"
Qxy (x—a) (x—a) (x—a)*
where 4, 4,, ..., 4, are numbers to be found.
The method is explained by the following examples:
[ETTTT4 Resoive % into partial fractions,
F+x-1_ 4 B c
EITITE, Suppose s = vz Gt 2 Gt 2
= FHr-1=4x+2P+BE+2)+C @
= P+x-1=4@+4x+H+Bx+2)+C (ii)
For C, putting x+ 2 =0, L.e., x=-2 in (i), we get
(-2 + (=2)— 1=A(0) + B{O) + C
= 1=

integer, then
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Equating the coefficienis of x* and x in (ii), we get 4=1
and 1=44+R8

= 1=4+8B = B=-3

X+x-1_ 1 3 1
Hence, 3 ¥ 7+ 3

(x+2) x+2 (x+2)Y (x+2)

1

Resolve ———————— into partial fractions.
[RTTa 5 | Resolve G GE D) Into parti ons

oy Here denominator = (x + 17 (o — 1)

Solution

=@+ 1PE+1)E-1) = (c+ 1P x~T1)
1

1 _
x+1D2 (-1 (x+1)(x-1

Suppose L = + “ + ¢ + 2
HPpe -Dx+17  x-1 x+1 (x+17 T (2+1)°
=  1=A@+1P+ B+ (x— 1) +C— 1)x+ 1) + D - 1) (i)

=  1=AQ"+32+3x+ 1)+ B A2 —x - IHCE - 1)+ D(x - 1)

= 1=d+B’+(B4+B+O¥(B4-B+Dx+(4d-B-C-D) (i)
For A, puttingx—1=0 = x=1 in (i), we get

o
1=42) = A=%

For D, puttingx + 1 =0 = x=—1 in(i), we get
: 1
1=DC1-1) = D=-
Equating the coefficients of x* and x* in (i), we get

3 1 : 1
and 0=34+8+C = 0=——1C = O=—7
8 8 &
Hence the partial fractions are:
i 1 1 1
8 , B, 4 . 2 b 1 g L

1 xtl GrP (it 8(x-1) 8xtD 4@+l 2xt1)
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P EXERCISE 5.1

Resolve the following into partial fractions:
y B " a-b g .
= “ ea-b P Tide-D
2 2x+3 i X +4x+5 P 45’ +5x5*-3x-2
U e+ E+D(x+3) (+ 12 +5x+6) ' -1

3% -12x+11 § (x—1)(x—2Xx-3) 9 P
D x-DE-2)x—-3) (—4¥x—5){x—6) @ +a)E +h)(F +c)
o, X+1 1 FHx 0 3 +4x—5
-1 (-1 (a1

1 4 -3z +1 12x* —48
= xx+1) e (x+D(x—1)* i o (x—2)*(x+2)*

Case III: When ((x) contains non-repeated irreducible quadratic factors
Defimition: A quadratic factorishreduci];l:ifﬁcanmtbewrittenasthepmductof
two linear factors with real coefficients. For exammple, x* + x + 1 and 2% + 3 are
irreducible quadratic factors.

If the polynomial O(x) contains non-repeated irreducible quadratic factors then %
may be written as the identity having partizl fractions of the form:
Ax+ B
ax’ +ix+c
The method is explained by the following examples:

\ Ix-11 : . 2
KE: 136 Resolve —————— into fractions.
ve e imo patl actons

w-11 _Ax+B C
| = i
A PP DG+ x2+] 343

= 3x—11=(dx+B) (x+3)+Clx*+1) (i)
= 3x-ll=(4+CP2+(B4+Bx+(3B+C) (i)
ForC,puttingx+3=0 = x=-3 in(i), we get
-8-11=0(9+1) = C=-2

where 4 and B are the mumbers to be found.
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Equating the coefficients of x* and x in (ii), we get
0=4+C = A=-C = 4=2
and 3=34d+8= B=3-34 = B=3-6=> B=-3
. 3x-11 _2x-3 2
E+D(x+3) +1 x+3

4x* +8x
|7 ei 7| Resolve ——————
s Ve 2 +2x2 49

ETIRTTR Here, donominator = x* + 22 +9 = (¢ +2x + 3) (* — 2+ 3)
4 +Bx 4x% +8x
P+ +9 (P +2x+3NP —2x+3)

4x 4 Rx _ Ax+B  Cz+D
(424 3)x*-2x+3) F+2x+3 x*-2x43
= 42+ Br=(dx+B) (F— 2+ 3)+ (Cx+ D) (@ +2x+3)
= 4+lx=(A+C)F°+(-24+B+2C+D)3

+{(34-28+3C+2D)x+3B+3D (i)

Henc

Suppose

which ir an identity in x. .

Equating the coefficients of x°, %, x, #° in (i), we have
0=A+C (i)
4=-24+RB+2C+D (ii)
8=34-2B+3C+2D (iv)
0=38+3D )

Solving (ii), (ii1), (iv) and (v), we get
A=1, B=2, C=-1 and D=-2
" dc'+8x _  x+2 . -x—2
22" +9 P +2x+3  2*-2x+3
Case IV: When (X(x) has repeated irreducible quadratic factors
If the polynomial ({x) contains a repeated irreducible quadratic factors (ax® + bx + &)",
nEZandnisaposiﬁveinﬂger,thm%mayhemittenasthefullowingidenﬁty:
x
P(x) _ Ax+B Ax+B, . Ax+B,
ox) af+bx+c (@ +bx+cf = (ar +bx+c)
where A1, B, A2, By, ..., Ay, By are numbers to be found. The method is explained
through the following example:

Heng
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lew%mpmﬁalﬁmﬁm.
ax* _Ax+B Cx+D  E
(FC+1P(x-1) xF+1 @+ x-1
= 4 = (dx+ B+ D{x - 1) +(Cx + DYx— 1)+ E(* + 1) (i)
= 4= (A+Ex+(-A+BY P+ (A-B+C+2E)
+(-A+B-C+D)x+{-B—-D+E) (i)
ForE,putingx—1=0 =x=1 in(i), we get
4=F(1+1Y = E=1
Equating the coefficients of x*, x°, 2, x, in (ii), we get
G=A+E s A=—FE = A=-1

Solution'| K=

=-A+B = B=A = #=-1
4=A-B+C+2E ,
= C=4-A+B-2E=4+1-1=2"> C=2
and 0=-A+B-C+D
= D=A-B+C=-1+1%2=2 = D=2

Henge % ool 242 1
- (x‘+1)*(x-_1__}, L+l (P x-1
P EXERCISE5.2 _d
Resolve imq, pmunl fractions:
I 2x* +3x+3 5 2x+1 . 2x+32
C x+DP+D)  (x—2Xx* +3x+5) T (=P +2)
4 3% +3 - A 6x* + 407

JET) T P rzeal 5 G2 Ay




Sequences and Series

INTRODUCTION

In this unit, gtudents will leam fo analyze and solve problems imvolving arithmetic,
geometric, and harmonic sequences and serigg, inchuding their real-world applications.
Students will identify various sequence types, compute finite and infinite sums, and
utilize gigma notation. Additionally, they will explore practical scenariof such ag motor
vehicle leasing, investment planning, and finencial celculations. This unit also
emphasizes applying these concepts to diverse fields, including healthcare, finance,
and traffic modeling. Finally, smdents will be able to solve both theoretical and real-
life problems using sequences and series effectively.

Let us observe the following pattern of numbers:

G 5,11,17,23, ... (ii) 6,12, 24, 48, ...
24 8 16

iif) 4,2,0,-2,—4, ... ey 2,2 828

i) 4,2, W 39 27 m

In example (i), every number (except 5) i8 formed by adding 6 to the previous numbers,

Hence a specific pattern is followed in the arrangemeni of these numbers. Similarly, in

example (ii), every mumber is obtained by multiplying the previous mumber by 2,

Similar cases are followed in example (iii) and (iv). When a set of numbers follows a

pattern and there is a clear rule for finding next number in the patiern, then we have

sequence as in above examples.

6.1 Seguence

A sequence is a function whose domain is the set N of sll natural numbers, whereas the

range may be any subset of real numbers or complex numbers. The numbers in &

sequence arg called its termn. We denote the first term of 2 sequence as a,, second term

asazandnﬂon.'rhen“‘tam]ufasaquemeiﬂ denoted by g, , which may also be referred

to as the general term of the sequence, and the terms immediately preceding it are called

the (n — 1)™ term, the (r — 2)™ term and so on.

6.1.1 Finite and Infinite Sequences

1. A sequence which consists of a finite number of terms is called a finite sequence.
For example, 2, 5, 8, 11, 14, 17, 20, 23 is a finite sequence of 8 terms.

2. A sequence which congists of an infinite number of terms is called an infinite
sequence. For example, 3, 10, 17, 24, ... is an infinite sequence, or more gencrally
as 3,10,17,24, ..., Trn— 4, ... to show how each term was generated.
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If 2 sequence is given, then we can find its #® term and if the #™ term of a sequence is given |
then we can find the terma of the sequence.

Find the first four terms ufthﬂfoﬂowﬁngsequmneswhnsenﬁMm

given:

() @a=3n+1 () a=3n"-3
TG ax=3n+1
Substituting n = 1, 2, 3 and 4 we have

a=31)+1=3+1=4

Similarty, a,=3(2)+1=6+1=7

a,=3(3)+1=9+1=10
g=34)+1=12+1=13

The first four terms of the sequence are 4, 7, 10, 13,

(i) a.=34"-3

Substituting # = 1, 2, 3 and 4 we have

a =3(1¥-3=0 _

Similarly, a, =3(2P-3=3(4)-3=12-3=9

a,=3(3P -3=-39)-3=27-3=-24
a, =3(4yY-3= 3(16)—3;’_43"-—'3 =45

The first four terms of the sequence are 0; 9, 24, 45.

Sequences of numbers are also cafled progressions. Depending on the pattern, the

progressions are classified as follows:

() Arithmetic progression (i) Geometric progression
(iii) Harmunmprogmsston
P EXERCISE 6.1 _d
1. Find the ngsbdéur terms of each sequence,
() 12,16,20, ... (i) 3,1,-1, ...
2. Write down the first three terms of each of the following sequences:
() a=3n+5 (ii) a ,=4a —7 and g, =3
(i) @ = (1—3)n+1) @) =1 g, =—
a +2
(") a=8-_2 V) a=1, d,=Ca,+2)
3+n
(vii) @, — (24 (vili) a, = (1§ 7a*

. Write down the 15%

3. An expression for the »™ triangular number is n(ﬂ; D

triangular mumber. Make a friangle of dots by taking n = 3.
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4, Wriie down the ™ term of each of the following sequences:

@ 1,4,9,... @) 1,1+2,1+2+3,...
(i) @, b, @, by, ar by, ... (iv) x, 2%, 3%, ...
) a ,a,+da,+2d, ... M) a,,ar,a?, ...

a | 2a 3ay, . a1 11
o )51+q bte, Be, (m)al a+d at2d

6.2 Arithmetic Progression or Arithmetic Sequence (A.P.)

A sequence {as} is called an arithmetic sequence or arithmetic progression (A.P.), if
Gn — fix-1 i8 the same number for all # € Nand # > 1. The difference da —an1 (# > 1)
ie,, the difference of two consecutive terms of an AP, is called the commom
difference and is usually denoted by 4. _

Thus, an arithmetic progression is a sequence in which each term after the first is
obtained by adding fixed constant to the previous term. This fixed constant is called
commean difference of'the arithmetic progression.

For example: Following sequences are in AP,

(i) 1,3,5,7,... (common difference iz 2)

(i) 54, 51,48, ... (common difference is ~3)

An arithmetic progression with # terms ¢an be written
as:

If‘al a.! azl (L1 G_,...Ifﬂiﬂ-A.P.,

then d=0. -a=a—a = ..
whmen_iln“'te:mofﬂieﬁ.l’.

a, a+d,a+2d,..,a+(n-1)d
The #® term of an arithmetie progression can be written as:
a,=a+({n-1)d

@ 1= 2+ 3"m/ﬂ,‘hr ermg of an AP, gre denoted by a, 4,, g, and o respectively.
(i) n"’mﬁnmﬂmmdquﬂ is (#t — s+ 1) term wheee *m’ denotes the total ramber of terms

{iif) Three numbers &, 5, ¢ are in A.P. if and only if 2b=a+e¢.

(iv) Any term {except first end last) in en AP. is equsl to half of the sum of two terms equidistant
from it

(v) Ifﬂlctl:malisunlnmnrnutgivm,ﬂmu"’m'bewﬂttmasaﬂ=a_+{n—m}d.ﬂzm.

L Note that the subseript of the given ferm and cosfRcient of 4 som to ».

The middle term of an A.P. depends upon the number of lerms, for example

G 1,3,5,7,9,1lisan AP. withn=6

(i) 1,3,5,7,9,11,13 is an A.P. with n="7
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1.e., If ithe total number of terms of an A.P. 18 even, then there are two middle terms 1.e.,

th
[g) and [g+1)‘1 where » represent the mumber of terms. In example (i) §, 7 are
two middle terms,

If the total mumber of terms of an AP, is odd, then there is only one middle term ie.,

2

6.2.1 Selection of terms in A.P.

(i) Three consecutive ferms of an A.P. can be chosen as a—d, a,a+d ora,a +4d,
ora-~+2d

(ii) Four consecutive term of an A.P. may be written like a -3, a -d, a+d, a+3d
ora,atd, a+2d,at3d

(i) Last four consecutive terms if £ is the last term can be written as below:
£-3d,0-2d, £—d £

If each term of an A P. i3 increased or decreased, multiplied or divided by same non-zero

number, then the resulting sequence is also an A P. that is, if a,, &, @y, ..., G, .. ArE N AP,

with common difference d then

i) gtk atk, .. ¢ Lk, .. arealsoin AP, with common difference ‘d”.

(i) ka, ka,, ... . ka, ... are dlgo in AP, with common difference ‘&d” .

["—”Tmmaxmple(ﬁ)mthemlymidmem.

(i) %, %, .%. is fre also in A.P. with common difference %.

(iv) Term by term addition or subtraction of two A.Ps. is also an AP. ie, If
8, Oy, Gy nlyy ... a0d B, b, by, .. b,. are in AP, then gt b,a, =5,
a, + b, ... are algo in AP,
[RTYITIF 2| Find the general term and the eleventh term of the A.P. whose first term
and the common difference are 2 and —3 respectively. Algo write its first four terms.
Here, ¢, =2,d=-3
Welkmow that ¢, =a, +(n— 1)d
So, a, =2+Em-1)¥-3)=2-3n+3
a, =5-3n (i)
Thus, the general term of the AP, is 5—3n
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" 11 in (i), we have

g, =5-3(11)
=5-33=-28
We can find a,, a,, a, by puttingn=2, 3, 4 in (i), that is,
a, =5-32)=-1
e =5-3(3)=-4
g =5-34)=-7

Hence, the first four terma of the sequence are: 2, -1, -4, 7.
[ETT I 3| If the 5™ term of an A.P. is 13 and 17 term is 49, find @, and a,, .
EIITTTT Given that a, =13 and a, =49 :
Puttingn=5ina, = ¢ +{(n—1)d, wehave a, =a,+(5~1d.
d =dy +4d
13=n,+44 Coa. =13 V)
Also @, =6 +{(17-1)d
49 =g, +16d (e =49)
49 =(a,+4d)+124
49 =13+12d by (i)
= 12d =36 =. d4=3
From (i), @ =13-4d=13-4(3)=13-12=1
Thus a,=1¥(r~1)3)=3n-2 and
G, =3(13)-2=139-2=37
[ZTTTIT 4] Find the number of terms in the AP, ; if 2 =3,d=7and a,=59

(XA, Using'a, = 4, +{n—1)d, we have
39=3+(m-1)x7 (v a=3aq=3 andd=7)
$6=(n-1DxT=>n-1=8=n=9
Thus, the terms in the A.P. are 9.
BTN 5| If @, =3r—11 find the A term of the sequence.
EITTIT, Replacing n by n+ 2, we have
G422 =3(n+2)-11
@,=3n+6-11
a,=3n—3
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14.

15.

16.
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18.
19.

P” EXERCISE 6.2 P

Find the common difference and write the next two terms of cach arithmetic
sequence.

@ 9,16,23,... @) S5, 5+v2,5+242,..

Write the first three terms of each arithmetic sequence, with given information.
D a-=-24d=13 i o =12,d=-13

Finda,  ,mda, ifa =4+3n

Find the indicated term of each of the following arithmetic sequenoes:

) a=3%d=7a, () 8,3,-2,...,a,

The 18" and 30” terms of an mthmehcsequenoﬂm?pﬁ‘k@ 9 respectively.
How many terms of this sequence are less thenm 10007

I530] atermof'the AP. 5,11, 17,...7

If2x, x + 8, 3xr + 1 are in A.P., then find the velug of x
Which term of the AP, 3, 8, 13, .8 1237 o\~

Which term of the A.P., 30, 29.5, 29 'AH t negative term?
'Ihe?ﬂ'andZI"tmmsofmAP are3 07 respectively. Find the AP. and

its 100 term.

If 1 ' ! aremA.K%showﬂmta b_a- ]
a—¢ b—c a—c b-a

How many numl: uf are divisible by 77

Find the 8 term from ofthe AP, 8, 11, 14, ..., 185.

] o
Fmdthnn'hten& i?ngrmun [ij .[?] :(l??j s+« . 15 the progression
anA.P?

If the netic progressions 3, 10, 17, ... and 63, 65, 67, ... are such that their
n® equal, then find the valve of .

If the ® term of an AP. is ¢ and the g™ term is p, prove that its ™ term is

(ptg—n)

i) )il wis AP, dewtini b 22
a b c a+ce

I.fl land— arein AP, shuwthatmﬂwmmnndlﬂermcemu
a b € 2ac

If @, end &, denotes two different ferms of an A.P., show that its #™ term is

ociles k)[ 4 )
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20. If a,,a,,a,,...,4, are positive and in AP, prove that

1 1 n—-1
+ .

r 1~ e o gt

21. Ifthe roots of the equation (b—c)x” -+{c—a)x+{a—b)=0 are equal. Show that
a, b, c are in AP

22, Ifthe sides of a right-angled triangle are in A P., find the ratio of iis sides.

23. If the n* term of a progression is a linear expression in #, then pmsre that this
progression 18 an ALP.

6.3 Arithmetic Mean (A.M.)

Ammberdlssa:dtobetheﬁ,]\lbetweenthetwummberseanﬂbﬁa,d b arein
AP. If 4 is the common difference of this A.P., thunA a=dandb-A=d.

Thus A-a=b-4

h‘A \ Ay Ay .., A, are said to be
o d=a+b _ between twd numbers o and b, then
a+bdb ad,A A, A baein AP

(27T 6| Find three A.Ms. bctwean»ﬁ and 342.
PRI Let A, 4, 4, be three A.Ms. between V2 and 342 . Then,

3, A, 4, Ay 33 arein AP,
Hege a,=\5, n=5, @=3\5 uging a5=a1+(5—l)d,wehaw3-\f2_=ﬁ+4d

S 221
4 2 2
A,=Al+d—%+é=% 215
A =4 +d= 2+%=£=%

3 5
—, 22, — th . b e
Thmmﬁ N &m ¢ three A.Ms. between v/2 and 3v2
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P EXERCISE 6.3 _{

1. Find A M. between the given numbers:

@ 2V, 2-3 Gi) (a+bY,(a-b)"

If 6, 11, 16 are three A.Ms. between a and b, find & and 5.

Insert five A.Ms. between /2 and %

The A.M. of two numbers is 7 and their product is 45. Find the numbers.

If # arithmetic means are ingerted between g and b, prove that u“-ﬁ.é.:ﬁ:_T

i . il o

, Where

d is the commeon difference. N\
6. 1f A is the AM. between a and b, prove that (a— A)?-_+-(-,-'i Lp) = 1(::—3:)1 !

w1
7. For what value of », ;b mtheAM hﬂtween.-:randb where a=b.
R

+5
6.4 Series
Thﬂsumofthctcnnsufasequmoemcalhdﬂlcnmesnfﬂlecmpondmgsequmoe
For example, 1 +2+3+ .. +nmaﬁnﬂesofﬁmtnnammlnmnbcm
The sum of first 5 terms of serics is denoted by Sh.
Wewrite, So=a1+az+ -+ gy
Here, & =a \
S=a,+a 2
§=a taytay .
S,=ay +a,+a; + - + ayis known as n™ partial sum,
The sum of the terms of an arithmetic sequence is called an arithmetic series.
To develop & fornrula for the sum of any arithmetic series, consider
S, =a, +(a +d)+(a, +2d)+ ... + (a,— 2d)+(a,—d) +a,
8, =a,+(a,—d)+(a,—2d}+ -+ (g, +2d)+ {2, +d)+a
Thus, 25, ={g+a)+{g+a)+(@+a)+ +(g+a)+(a+a)+(a+a,)
=nla,ta,) [Wehavenmmsof(nﬁa,]]

S.=%(ﬂ1+a.)
But, a =a+(n-1)d
Thus, S,:%[a]+al+{n—1)d]=—';[2al+(n—l)d]
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Find the sum of the first 100 #5770
positive integers. The sum §, of the first 7 terma of an arithmetic
FXITE, The series is 1 +2+3 + .-+ 100, | Series it given by

Since we can see that g =1,4 =100and 3.=§[2‘1+.(ﬂ‘1]d]“ 8, =—:(u ta,)
d=1.

Method-1 Method-2
s, =%(a1 +a,) s, =g[2a1 +(n—1)d]

100 100 '
Sioo =——(1+100) | Sypo ==~ AN+(00=T)L] ~
S0 =5000) | Sipo=50(10D
8,0 = 5050 S0 =5050
Find the 19% term and the partial sum of 19 terins of the arithmetic series:

2_,_3_,_ 5+E+---
2 2

T Here, a,=2, a,= % and d= a,.:—ﬁ-,;-'%—z:%

Using a4, = a+(@-1d.
Substitte »=19
ay = 2+(19-1

_f=.2+1s(%]=2+27=29

Using () §,=(4+a,)

19
8y = E(al"'“ls}

19 19, 589
S, =" (2+29)=—(@3D)="0
b=, Q+29)=—(D="

Find the arithmetic series if its fifth term is 19 and §, = a,+1.
Given that g, =19, that is,
a+4d =19 @)
Using the other given condition, we have
5, = %[2q+(4 — Dd]=ay+1




<> s (R
4a +6d = g +8d +1
30,-1=24
Substituting 24 = 3@, — lin (i), we have
a,+2(3a,-1)=19
Ta, =21 = a=3
From (i), we have,
4d =19-a4,=19-3=16
= d=4
Thus, the series i8 3+ 7+ 11 4.,

How many terms of the series -9 — 6 —3 + 0 + ... amount to 667
HBI‘E, a=-9 mid=-6—-(9)=3.

Let S, =66

Using S, =%[201 +(n—Dd], we have

66= " [2(-9)+(n=1)3]
132=n[3n-21]« = 132=3n(n-7) = 44=n(n-7)
n*—Tn—44=0

55 h Ti‘-\o"-..429+1?6
~ 744225 _7415
2 2
But # cannot be negative in this case, so a = 11, that is, the sum of ¢leven terms is 66.
[ETTI0 1] Find the first three terma of an avithmetic series in which a, =9, a, =105

n=11,-4

and S, =741.
Step - 1: Since we know a4, g,and §,, | Step-II: Findd.
We use S_=E(al+a_)tuﬁndn. &, =i Hu—1d
2 105=9+({13-1)d
n 96=124
741=—(9+10
5, 0+103) §_
741=57n
13=n




Step - 111: Use d to determine a, and a,.
@=9+8=17, a=17+8=25
The first three torms are 9, 17 and 25.
I EXERCISE 6.4

1. Sum the series:

D) 3+6+94+-+ay, (1) %+\."§+%+---+a_}I

2. Find S, for cach rithmetic serics: C\}\L‘
@ & =4 n=25a=100 (i) al=4u,n=zu,d@’i)
(iii) a,=52,n=21,d=—4 4

3. Finda,fmmeaﬁunneﬁcuﬁes:d=s,u=19,s,,=,t-;f\s’é’;‘

4. How many terms of the series: 96 +93 + 90 + - &~ agmount to 107].

. If the three sides ufnﬁght—ung]edh‘iang]%ﬂ{&ﬂ;ﬁmmﬁmmhhf.,
find them. -\

6. Sum the series )

@ 3+5-7+9+11-13+15+17=19+ - {0 3n terms.

(ii) 1+4—?+1D+13—16+‘-12 22 -25+ - to 3n terms.
7. Find the sum of 20 terms of the geries whose 7™ term is 37+ 1.

Ln

8. The 5* and 9® term of P. are 11 and 17 respectively. Find the sum of 20
teTms.

9.  Obtain the sum of gl gers in the first 1000 positive integers which are neither
divisible by S nag

10. The sum o afan A P. is 171 and its eighth term ia 31. Find the series.

11. The 5% f an arithmetic progression is 21 and the sum of first six terms is

90. Figld the 18® term.
12. The sum of three numbers in an A P. is 24 and their product is 440, Find the
numbers,
13. The first four terms of an A.P. are 2, 6, 10 and 14. Find the least number of terms
needed so that the sum of the terms is greater than 2000.
14. Find four mmmbers in A.P. whose sum is 32 and the sum of whose squares is 276.
15. Find the five numbers in A.P. whose sum i8 25 and the sum of whose squares is
13s.
i 1 1

16. If i ] are in A P, then show that &*, °, ¢* are in AP.
a+d c+a b+e
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17. l‘ha surn of the first four terms of an A.P. i3 56. The sum of the last four terms is
112Z. If its first term 15 11, then find number of terms.

18. The first, saccond and lsst terms of an A.P. are a, 5 and ¢ respectively. Show that

R & (b+c-2a)(c+a)
2(b-a)

19. Show that the sum of n A Ms. between o and b iz » timnes the single A M. between

them.
6.5 Geometric Progression (G.P.)
A geometric progression or geometric sequence is a sequence fixed in which each term
after the first is found by multiplying the previous term by a non-zero constant r called
common Tatio. &
Like arithmetic progression, we can label the terms of a geemefric sequence as
G, 4;, @, and 5o on, a,#0. The a™ term is a, and the previous term is a, ;. So,

a,=r(a, ;). Thus, r=—=

A1
term by its previous term. :
6.5.1 Rule for nth term of 8 G.P. {/
Eachtemaﬁertheﬁrsttermismrm]ﬂﬁpléofimprwedihgtmn.ThB,wehaw,
& =ar=ar"
& =ar=(ary= alrz=a1r" >
= azr—(alr’}rﬂp’ =ar"’

a_ alr"" whchlsthcgmsraltermofaGP

652 Fmperﬁes of G.P.
(i) Ifeachterm of a G.P. is multiplied or divided by the same non-zerp number, then
the resulting sequence is also a G.P. that is if g, g,, &, - 2, - Arein G.P, and K is

a non-zero mmnber, then
() kg, ke, ke, ..., k2 ... arcalso in G.P,

®) %. %. %. _ %, . are also in G.P.
(ii) The reciprocals of the term of a G.P. also form a G.P. that is if @, b, ¢ are in G.P.,
111

then — arealsumG.P
a’' b’
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(iii) lfeaﬂhtermof a G.P. is raised to the same power, the resulting numbers alse form
aG.P. thatis, if g, b, c are in GP,, then &°, 5", " are alzo in G.P.

(iv) Three numbers &, b, ¢ are in G.P. if and only if ¥* = ac.

{v) Ifthe set of pogitive mmbers a,, a,, a,,...; @,,... arein G.P., then log g,, log a,,

log @y, wey log @, ... are in AP. and vice-versa.
(vi) Term by term multiplication or division of two GPs. are again in G.P. ie,,
if a,, a,, a,..., a,, and b, b, b, ... ,b,, are in G.P. then ab, ah, ah,, ...,

a, :
ab and— =, e, arcdlso in GP.
h'h’ ha "B,
1561 1112 Find the eighth term of a geometric sequence for which ¢, =-3 and
r=-2.
EITTIT, Here, @ =-3, r=-2, n=8
a, =""'1‘3"'1“_l
a; =(3) "
=(3)- (-128)
a; =384

Find the #® term of the G.P., 3, 12, 48, ...

ENTTON, Here 4, =3, r=4

a,=a-r"
a=3c4"
Find the tenth term of the G.P., for which a, = 108 and r=3.
Step- 1: Find 4. Step - 2: Find @,
'Hefa,n=4, r=3, a,=108 Here, n=10, ¢, =4,r=3
al=a1.rn—l a-=ﬂl'r"-1
4=a1_34—1 a“’=4_31|]—1
108 =27, By = 78,732
4=q
@ =4

|ZFT0M15| Find the 5% term of the G.P., 3, 6, 12, ....

[T, Here @, =3, a, =6, therefore, r=2 = 5 — 2.

a 3
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Using a, =a™" for n =5, we have

a=ar'=32""=3.2=48

Find a_ if a, =% and a.,:% of a G.P,
Solutien; To find g, we have to find ¢, and r.
Using @&, =ar™" (i)
a,=ar ‘=ar , so ar S, (i)
27
2 —64 s @
and —ar t=ar® , s_"b4
9 =OrTmEr o« War=oy (m}
, 3
T, G _ 729 _—8 r (—_2]’
a”? 8 2 3
27 o
= r=—§ ( * N\ (taking only real value of 7)

Put r’=—% in (ii), to obtain @, that 18,

(ELE o o
) T &

Now putting g =—1 and r=~_?2in (i), we get

| a.;fé—i)[—%]"_l = -0 [%]' =1 @T :

" " EXERCISE 6.5 4

1. Find the 6 term of the G.P.; -6, -3, _—; ,

2. Find the 8® term of the sequence, 3, 3%, 3°, -+,

3. The n™ terms of the sequences 1, 2, 4, 8, --- and 256, 128, 64, - are equal. Find
the value of n.

4. Find the first five terms of cach sequence described:

® &=23 7= @) a=579, r=-2




5. Fmdthelzﬂ‘tﬂmoflﬂ?,t -2+21, -
6. Ifthe 4™ and 9* tevms of a G.P. are 54 Bnd 13122 respectively. Find the G.P. Also
find its genersl term.
7. Ifa,b,c, darein G.P., prove that
) ea-bb—c,c—darein GP.
() @—8, 5 —c,c*—d® e in G.P.
(i) &®+&, b+, +d*arein GP. A

B, If(p+ q)"term of a G.P.igmand (p - q)“’tcnnmn,ﬂmnﬁndﬂx(?p “term,

9. Find three consecutive sumbers in G.P. whosemmmlﬁmdthpu‘pmductisﬂﬁ

10. The 3™ term of a G.P. is the square of 1* term, Ifthczn"t::@mgthmﬂndthﬂtiﬂ‘
term. A &'

% % dc are in G.P. Shuwthﬂfhewmpluq%mom :I:J:

12, 1fthe numbers I, 4aud3msuhh'aﬁtadﬁnﬁ~ﬂ1rﬁecﬂnaec1MVGt61msofmA.P
the resulting numbers are in G.P. Fmdlﬁ&ﬁﬂgmlnumhmﬁlheirmmmll

13. 1If three consecutive nmn'berﬂmA,? a'remcrenaedbyl 4, 15 reapectively, the
resulting numbers are in G.P, FJE\Ldthsongmalnumhm if their gum i 6.

14. If p®, g™ terms of a G.P. axﬂqandpmﬁpechvaly,shﬂwﬂmt(p+q)“’termlﬂ

£

|
(¢° = p%). &

15. Ifa, 2a+2, 3¢1+\Q s . are in G.P., then find the fifth term.

6.6 Geometf,lc Mean (G.M.)

Anuml:m'G@;‘Sﬂdtoheagemnumcmﬂm(G]u[.)'betwuentwnmlmbmaandblfa,
G, b are in G.P. Therefore

1. If

.0 Gy, Gy G, ..., G are said o be n
a G @M. between two numbers & and b if @,
= G =ab Gy, Gy Gy, -y Gy baemG.P
= c =:I:Ja_b

| BT 7| Insert three (G.Ms. beiween 2 and %

TR Let G, Gz,@heihreeGM.betweeand%.Therefore




<in -,

l(ﬁ,Gz,Gs,;mmGPHemq z,a,— andn =5.

Using @, =ar™" we have
a=ay®” thatis, a; =ar* @
Now substituting the values of a; and g, in (i) we have

%=2r‘ or r‘=% (i)
Taking square root of (ii), we get
Pt
2
"'Z'J’ta]txw&r'ﬁ:,1"2=l or rzz—lzi £ —1=i%)
2 2 2
1 1
— :'*=:|:—2 ot r=iﬁi
When r=i,ﬂ1mGl=2(i\—J_G z[ )’—1 g=2f L]=L
V2 V2 ) 2 ~V2/) V2
=1 -1 B! 1
e "E-“‘“‘ﬁ'z(ﬁﬁ“ ’(ﬁ] ~ "”"zﬁj"?z
_i N B [_]’__ ’LJ’_ i
When r—ﬁ.ﬂlmf}l.l—.il(ﬁ)—ﬁi,{?i—zﬁ =-1, G,= 2“5 ")
When =_—i.ﬂ1=ﬁ ( ——J_,G =2 j——lG 2'—]] L
r- G G2 -6 -2 & J‘

Herulnﬁg.h&mwmﬂyﬁmbuthmnﬂm'mmmmﬂmﬁm
of 1

PV EXERCISE 6.6 4

1. Find G.M. between:
(i) —2and8 (ii) —2jand 8i (iii) 6and 9

2, Insert four real geometric means between 3 and 96.

3. Ifboth x and y are positive distinei real numbers, show that the geometric mean
between x and y is less than their arithmetic mean.

4, For what vahue of n, ;:i

o=l

is the positive geometric mean between g and b7
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£ T h:: A M. of two positive integral numbers exceeds thedr (positive) G.M. by 2 and
their sum is 20, find the numbers.

6. The AM. between twe numbers is 5 and their (positive) GM. is 4. Find the
mumbers.

7. The arithmetic mean between two positive mumbers ¢ and b is double their
geometric mean, Prove that g h=2++3:2—-43.

8. Ifone geometric mean G and two arithmetic means p and ¢ are inserted between
two positive numbers, show that G* =(2p—g)( -

6.7 Geometric Series

Suppose you e-mail an Islamic quote to three friends on Monday. Each of those friends
send it to three of their friends en Tuesday. Each person whe' receives the quote on
Tugsday sends it to three more people on Wednesday and 50 .on,

E-Mall L X
'@.‘-- MODREY ==mmmoa————f s S X
ﬁ%}-- Tuesday =-====-s 2] |+

(- Wednesday-——-S28 L8R 488 A2 48R 448 LAR 48R AQR

Notice that every day, the mumber of people who read your Islamic quote is three times
the number that read it the day before. By Sunday, the number of people, including
yourself, who have read the quote is 1+ 3 + 9+ 27 + 81 + 243 + 729 + 2187 or 3280.
The numbers 1, 3,9, 27, 81, 243, 729 and 2187 form a geometric sequence in which
@, =1 and r=23. The indicated sum of the numbers in the gequence, 1 +3+9+ 27+

81+ 243 + 729 + 2187 is called a geometric series,

The sum of a geometric progression can be written as: §, = a‘(: r")

-r
To develop & formula for the sum of a geometnic series, consider
8 =g +ar+ar’+ . +ar  +ar” itart! ()

3 R

rS.= ar+ar+.+ar" +art t+art var” (ii)

Subtracting (ii) from (i), we get
8 —rS, =ag—ar* Ifr=1, then 5. = na,




Mameaates (0

| 5 CT T 118| Find the sum of » terms of the geometric series if o, = (—3)[%)..
RN, We can wite (-3 2 s

(LT T oL

uomparmg( EIEJ with ar*" ',wehmal———andr-_—s'

gm0, _%[I_EEI] P

V_ EXERCISE 3 7J
1 1

Thus,

1. Find thesmnﬁl‘ﬁrsrlﬁlermsaﬁheG.P L

2. Tha3“’b::m;uta G.P. is 16 and the 6™ term is —128, Find the first term and the
sum of thefirst seven terms.
3. Sum tomgering the series:
Q) 02+022+0222+ . (i) 3+33+333+.
4, Sum to » terms the series:
@) 1+@+b)+(@+ab+b)+(a+ab+ab?+5)+---
() r+A+BA+(1+E+° +-

s Smtheaarim2+(1—f)+(];}+--~tﬂ3t¢rms.
i
6. Show that the ratio of the sum of first # terms of a G.P. 1o the sum of terms from

(n + 1) to (2n)™ term ia %Ywharcrisﬁlacc}mmﬂnraﬁn of the G.P,




6 s> el |
6.8 Anthmetmn—Genmemc Progression (A.G.P.)
Suppose a,, a4y, @3, ... , Gy, ... iSEN AP, wnd b, b,, By, ..., b, ... 188 G.P. then the
sequence formed by multiplying the comresponding terms of A.P. and G.P., that is, a,b,,
@b, Gybg, ... y @ D, ... 18 5aid to be an arithmetico-geometric sequence.
Congideran AP, a,a+d, a+2d, ..., ja+{n—1)d} anda G.P., b, br, b2 ..., b~ 1
where r=1.
Multiplying the corresponding terms of AP. and G.P., we get an arithmetico-
geometric sequence
ab, (a + br, (a -+ 2dbr, ..., {a+{n—- Dd}br*-!

Note that the # term of arithmetico-geometric sequence is pmcluet of n™ term of AP,
and n® term of G.P.
6.8.1 Arithmetico~Geomeiric Series
Sum of the terms of arithmetico-geomeiric sequence is called arithmehco-geometric
series. Thus, arithmetico-geometric series has ﬂl&fmm

ab+ (a+dbr+(a+2dbr” - +{a+(n - Dd}br* !
Sum of first # Terms of Arlthmetico-Geomeéttic Series
Let S,=ab+{a+dbr+(a+2dbr*+ - +[a+n-1)dbr! {0
Then 7§, = abr+ (a+ b+ < Fla+{n—2Ddbrt +Ha+ (n— 1B (i)
Subtracting (1i) from (i), we get
(1 -7 S, = ab+[dbr+dbr2+ -+ dbr"~Y] — [a + (n — 1)d]|br"

=ab+ﬂ-ﬂi-:—f1)—[a+(n—1)d]br"

-.gb+fi’-db’ —[a+ (n— 1)d)br"

r T

§ = ab 3. dbr dbr"_ _[a+{n-1)d%r" (i)
* 1-r (-r* (-r)? 1-r

which is the sum of the n terms of arithmetico-geometric series.
6.8.2 Sum to Infinity of Arithmetico-(zeometric Series
HA<l,thenr®* - 0andn” — Oasn—
Therefore, (iii) reduces to 5, = %2 + %" _

1-r (-1
which is the sum to infinity of arithmetico-geometric series.




<wr> nenace (1
BT TM19|  Sum the series upto mterms: 2-1+3-2+4-4+5-8+ -
LetS =2-1+32+4-27+5-2°+ - to n terms
n®termofthe AP, 2,3,4,5, - 84, +(a—1)d =2+ @ —1)1)
=2+n—l1=n+1
a" term of the G.P., 1,2, 2%, 2%, - - isap™! =127 1 =201

So, §,=21432+4+4224+52%+..+(@m+1)2""! (D)
Multiplying both sides by common ratio of G.P., we get

28, = 2243244 +52 4.+ (@2 +(a + D2 (D)
Subtracting (ii) from (i), we get

S, —25,=21+(3-2) 2+{@-3) -2+ G-+ <k H+1-m2* —(m+1)2"
—8,=21+12+ 122+ 12+ -+ 1-2° 7 —(at 1)2"°
-8 =2+{2+22422+ 0+ 22 N} (- D2"

s,,=2+2(2* ) _ (4128
8, =242 2 g2
— 8 =-n2
S, =n2"
20| Sum the series upto » terms: 2+:+g+;7+
4 6 8§
Solutio: il
Solution 290 2+3 5 gy T - o 71 terms
" term bf the A.P., 2, 4, 6,8, ... i8 2+ (n— 1}2)
=2+2n-2=2n
A% tecmn of the GB,, 1, 2,1, L ()[ ]—
3 27" Cal
So, S—2+4+6+i+ +£i ()
3 9 27 5 i
lS',,= E+i+£+_"+2ﬂ_—12+2 (ii)
3 3 9 27 i 3"
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Subtmcung (ii) from (i), we get

4-2 6-4 B-6 In-2In+2 In
—— |8, =2+ + + F o+ e
3 27 3 3

9
2 2 2]2:1
9

2 [ 2
— 8, =2+t —F e —
3" [ 3 27 g
2
3

37 1

38

|
)

sl ofl)
)

21] Find the'sum to » terms of the series: 1 + 2x + 3x? + 4¢° + ... where
x# 1. If |x| = 1, sum the series to infinity.

I -« \Let §, =142+ 3x2 + 43 + - ™! (i)
nooxS = x+2EEI0 e D) (i)
Subtracting (ii) from (i), we get
(1-x8, =l+x+22+22+ -+
_a-
1-x
_1-x"—n{l-x)x"

1—x
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_1-x -+ ™
1-x
a-s, = 1—(n+1)5" +ax™
l1-x
5 = 1—(n+Dx" +mx™
* (-zy
fi<1,thenx®—0,nx"—0 a8n— ‘.l
1 A
B Q~

0
rEXERCISEﬁsJ“

1. Find the 3% term of the arithmetico-geometric sequen&a. whme the arithmetic part
is1,4,7, ... and the geomeric part is 5, 10, 20, N

2. Find the ™ term of the mthmetlm-gwmehik anuem:a, where the arithmetic part
i8 3, 7, 11, ... and the geometric part }n/ikg}ls

3. Consider the m‘l:hmchm:—gmmetl:@ td:[umm defined by arithmetic part:

a, ,=2n+5 smn:lgf:-.':.:'ﬂ-strlr:1;!4:1;j g = ( —3Y". Find the ™ term and the sum of

first three terms of the an&meucu-genmetrm sequence.
4. Sum to n terms the fdfd:?rmg series:

(i 12+34+’S:SJ|-716+ (i) 23+43¥+637+83"+...

(i) 2+5,~h3;+“+ (i) 1+3+51+?3+
\‘5},14 5 5 5
47 10

v) l+—+ -+ -+

® 3 9 27

5. Sum the following infinite series:

(4] l+3+5+?+ (i) 2+5+B+£+

2 4 B 3 9 27

6. Show that 22- 4% - 8%-16% ... w0 =4

7. Show that ¥4 - 416 - ¥64 - §256... =
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2. Sum to n tarms the series 2+ 4x+6x* +8% +--- whare x#1

. : . 2n+l . (2n+1Y  (2n+1Y
9. Find the sum to » terms of the series: +3 J+5 +
2n—1 2n-1 2r—1

1
n L

11. Sum the series to n terms 2+ 5x+8%* +11x°+... and deduce the sum to infinity
if < <1.

6.9 Harmonic Progression (H.P.) i
A gequence of numbers is called 2 Harmonic Sequence or Hm&ﬁﬁl’mgmssion if the

reciprocals of its terms are in arithmetic progression. The séquence 1, %,%.% is a

harmonic sequence mince their reciprocals 1, 3, 5, Tm:&mA.P

Remberthatﬂmreclpmcalnfmomnotdgﬁned, g0 zero cannot be the term of a
harmonic seguence. ,

1 1 1
The general form of the harmonie —s ve .
. ° soquenioe is 0 a+d a+2d " a+(m-1)d

Find the n* and 8% ferms Of EP. £ 2, 1 = -

Thﬂremprocals nf*thctenm of the sequence,

111
ey wAAK

The numbers. 2,5, 8, -+ arein AP, s0
@ =2andd=5-2=3
Putting these values in a_= a, +(n—1)d, we have
a, =2+(nm-1)3
=3n -1

1
Thus, the »® term of the =—
n of the given sequence = 7 3r: 3 i




<> Manain

we get the 8% term of the given HLP, which is .
3x8-1 23
Alternatively, a, of the AP. =a,+(8-1)d
—2+7(3)
=23
'I’Ims,thesﬂltennofthegivenH.P.=%
LA T3 If the 4% and 7™ terms of the FLP. are % and % respectively, find the

sequence.

Sincethe4“’te1mofﬂleH.P.=% mdits'i’"tmm:—%, therefore the 4%

and 7® terms of the corresponding A P. are ? and 22—5 respectively.

Now taking q,ﬁeﬁrsttermandd,themmmm-diﬁérmceoﬂhem&spundingﬁf.,
we have,

13

3d=—" i
& + = ()
and al+6d=% (ii)
Subtracting (i) from (ii), gives
3d=§—g=6 = =2
2 2
From (i), we get
3 4
“T3
13
=2—6
2

Thus a4, ofthe AP. =g +d =

and @ ofthe AP. = q,+2d =~ +2(2)




Hence the required HLP. is E E E 3
15913
6.9.1 Harmonic Mean (H.M.)

A number H is said to be the harmonic mean (EL.M.) between two numbers z and b if
a, i, b are in H.P.

Let @, b be the two numbers and I be their HM. Then l, %g_%‘m'inA.P.
a A b
1.1 b+a
Therefors, =~ =4 b ab _8+b
G H 2 2 2ab
and  H-2%
a+b

For example, . between 3 and 7 is
2x3x7 _2x21 21
3+7 10 5

6.9.2 n Harmonic Meaus. between two Numbers
H.H,H, - H, are called # harmonic means (FL.Ms.) between ¢ and b if
a, H, H,, H,, .., H_, bare in 1L.P. If we want to insert n H.Ms., between a and b, we

: 1 1 A ;
first find n AM= 4, 4. ..., 4, between EME’ then take their reciprocals to get »

N Betviisen i b thit s,

; Zi will be the required # ELMs, between

¢ and b,

Examplef?] Fmdﬂ:reeharmnmcmmbetwean%md%
EITTEITN, Let 4, 4,, 4, be three A M. between 5 and 17, that is,

5, A, A, 4,17 are in A.P.




Using a4, = & +(n—1)d, we get
17 =5+(5-1)d (" a.=17 and a,;=35)
4d =12
= d=3
Thus, A=5+3=8 A, =5+2(3)=11 and 4,=5+33)=14

Hem:el . are the required harmonic means.

8 11 14 f:\\

P EXERCISE69 4 O
1. Find the 9 term of the following harmonic sequences: 14\*

.
111 1 -1 A Q'
(i) E,E'_, s (-il} _I_’ _l., \
5 7 3 v
2. Insert five harmonic means between the fo S@ngenuumbm:
. -2 2
(D — and_ (id) | -
s 13 @/ .

3. The firstterm of an H.P. is ——'@ﬁﬁﬁﬂhmjs% Find its 9% term

\
4. 1If 5 is the harmonic mean sem 2 and b, find b,

‘\}
[ ll’thcnumbeml, Lp(ind are in harmonic sequence, find £.
K 1 4k-1
&"ﬁwi’:Ml
bl

7. lfaz,.&Shndc’mmA.P show that a ++ b, ¢ + a and b + ¢ are in H.P.

6. Fmdnscll{ah may be H.M. between ¢ and &.

8. 1If the HM. and A M. between two numbers are 4 and E respectively, find the

numbers,

9. If the (positive) G.M. and H.M. between two mumbers are 4 and %, find the
numbers.

g, gRreom et b aib oy i AP, dowitet b s i P,

a b I




1l. 1fa, b, c, d are in H.P., show that 3(a—dXc— &) =(b—cla—d).
12, If between any two numbers there are inserted two A Ms. 41, Az, two G.Ms. Gi,

H +H.
and two H.Ms. Hi, Hi; show that 2+ _ Fh+H;
n 1, £3; show GG, HH,
13. The H.M. of two numbers ia 4. The A M., A and the G.M., & satisfy the relation
24 + ?= 27, Find the numbers.
14. First three of the four numbers ¢, b, ¢, d are in A.P., and the next three are in HLP,,
show that ad = be.
15. 1fa, b, c are in G.P., shiow that log, x,log, ¥, log, xerein FLP. (7 '
16. Ifa, b, c are in H.P,, show that
~ @—=b a " 3
et ® i —c} =(a+ =2b+c).
(i) e (i) (a—c) =(a c)(a c)
17. If2+x,5+xand 9+ x are in H.P,, find the value of 2,
18. Ifthe roots of the equation a(b — c)x2+b{r a)x-fc(a 5) = 0 are equal, prove
that @, b, ¢ are in H.P.

6.10 Miscellaneous Series
The Greek letter E{sigma) is used to dﬁl’ﬁi’ﬁlﬁms of different types. For example, the

notation Za, is used to cRpress. the sume, +a,,,+4a,, ,+~+a, and the sum

I=m

expressiunl+3+5+- tquerms:swnttenasZ(Zk 1), where 2k — 1 is the &%
k=1

termofthemmdﬁ;&mﬂedﬁemdexofmmmaﬂm, 1 and » are c¢alled the lower

limit and upper limit of summation respectively.

The sum of the first # natural rmumbers, the sum of squares of the first # natursl numbers and

the sum of thie cubies of the first # natural mmbers are expressed in sigma notation gs:
14243 +-+n=D k; P42+ 3+t =Y B ; P+ 243 +t0’ =) F

A=l k=1 km]

We evaluate Z[k" —{k—1)"] for any positive integer 7 and we shall use this result

Eml

to find out formulae for three expressions stated above.
E[F —(E=D"]=(1"-0")+ (2" —1")+ (3" —2") +

+HE-1)"-(r-2)" ]+ [a" - (a-1%]=
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i, Y[ —(k-D"]=n"

km]

O Y+5)=Ya+35

If m=1, then 3 [ —(k—1)1=r' ie, Y1=n
k=1 k=1 = &
® San-a3a

If m=2, then Y[ #~(k-1) |=n®
k=1
To Find the Formulae for the Sums

G ;z-:-lk (ii) Zlk’ (iii) Z‘ik’
() Weknow that (E—1)* =k*—2k+1 and this identity can be wrilten as:
P -(k-D*=2k-1 Ay~

Taking summation on both sides of (A) from k= 1 o , we have
P -E-17 = ¥ k-1

i.e., % = Zik—n & - i 1=n)
=l ; %=1
or 22k= n+n
2 nn+l)
Thus :qu' —2
Similarly, we can prove sasily
(@) 2 B .u(n,,ﬂ_.ll(h +1) (i) i I [n(n2+ 1]]
Eml . Eml

BT Il128| Find the sum of the series 1*+3' +5° +... to n terms,
1';k =(2k-1Y (14 20k =D =2&-1)

= 8% —12k2+ 6k -1
Let §, denote the sum of » terms of the given series, then

5=37,

Eml

or 5= @K -12k7+6k—1)
-1
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=83 K123 K +63 k-3

1
_ s[u(n;l)]‘_ lz[u(n+1);(2n+1)]+ 6[»(::;1)]_"

=20 (n+1) = 2n(n+1)}2n+1)+ 3n(n+1)—n
=207 (n* + 2n+1)—2n(2%" + 3n+ 1)+ n{3n+3)—n
=2n[(n’ + 2n* + m)—(2n* + 3n+1)]+ n(3n+3-1)
= 2n(n* — 21— 1)+ n(3n+2)

= 2n(n® —2n— 1)+ n(3n+2)

= 20 —4n—2+3n+2]

=n[2n" —n]=n[n(2n" —1)]

=n[20% -1

Find the sum of n terms of series-whose n® terms is n’+%n’+—;n+l.
EINTTTOY, Given that
I;=n3+§nz+ln+l
2 2
3., 1
Thus 1;=E+Ek +§k+l

and-. \S; = i[k’+§k’+lk+1)
=1 2 2

= i:ks+§i:k’+lzn:k+i:1
Eml 2].'-1 2l-‘l

Eml

_ uz(n+]]2+§x n(n+1)(23+1)+lx|:n(n+l}:|+
4 2 6 2] 2 "

=%[n(n2+2n+l)+(2#z+3n+l)+(n+l)+4]
=E(n’+2n*+n+zn1+3n+1+n+1+4)

=%(ﬂ’+4n3+5n+6}
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P EXERCISE 6.10 4
. Sum the following series upto » terms.
(M 1x3+2x5+3xT+ (i) 1x5+2X8+3x 11+
(i) 1X2+2%x5+3%x8+-+  (iv) I1%3Ix5+2%xd4XE6+3 X557+
(v) 1%x2x4+2x3xT7+3x4%x10+-
(vi) 22+42+ 62+ (vii) 32+ E+ 9+ ..
(viii)4 12+ 7 x 24+ 10 x 32+ -+ (ix) I+GBFHE+FH1L) + -,
@) 12+124+24 (1242243 4. '
2. Sum the series.
@ P-22+3-4+.4+Q2e-)" -2
? 1P+22 1242243

(i) —+ 4 +... 0 n terms ;
1 2 3
3.  Find the sum to » terms of the series whosgn™ ferms are given.
) 5@ +2r+3 (i) »*+2n=3
4, Given »™ terms of the series, find the Burhr{o 2» terms;
@) 3n°+5n+2 (i) w+n —2

6.11 Real Life Problems involving Sequences and Series

Vehiele Arrival Sequence

Vehicles arrive at a toll booth at a rate of 4 cars every 5 minutes. Represent the number

of cars mvmgwerhmnanaaequenm and predict the tot]l number of cars sfter &n

hour, \

XTI, The sequence of car arrivals is:
%\ 4,8, 12,16, ...

This is an 4.P., with

g =4 d=4,n= % =12,a4,,=7

Using the formula for arithmetic sequence
a, =a,+ (1 1)d
8, =4 +(12- 1))
=4 + 11{4)
=4 +44=48§
Thus, after one hour there will be 48 cars.
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Simple Intercst om Loan (Arithmetic Sequence with Particular Term)

To buy fumiture for a new apartment Tayyab borrowed Rs, 50,000 at 8%
simple interest for 11 years, How much interest will he pay?

Since 8% is the yearly imterest rate, we have

Interest after one year = Rs. 50,000 X %XI —Rs. 4000

Tasterest after two years = Rs, 50,000 %xzﬂm 8000
Therefore, we have the AP,
4000, 8000, 12000, ...
Here, a, = 4000, a, = 8000, d =@, — a2, = 4000, n =11

Using the formula
a, = +(n—1)d
a,, =4000 + (11 - 1){4000)
= 4000 + 10(4000)
= 4000 + 40000
= Rs. 44000
Thus, Tayyab will pay a total interest of Rs. 44000 on borrowed amount of Rs 50,000
after 11 years. '

Compound Interest on Loan (gometric Sequence with Particular Term)
Amma invests Rs, 200000 at 5% interest compounded anmually, What
total amount will she pet after' 10 years?
EZTTIT, Let the principal amount be P, Then,
The interest for the first year =P x % = P(0.05)
The total amount after first year = P + P(0.05) = F(1 + 0.05)
The interest for the second year = P(1 +0.05) % 0.05
The total amount after second year = P(1 + 0.05) + F(1 + 0.05) x 0.05
=P(1 + 0.05)(1 + 0.05)
= p(1 +0.05)*
Similarly, the total amount after third year = P(1 + 0.05)°
Thus, we have sequence of amounts
F(1.05), (1.057, P(1.057, ...
which is clearly a G.P., with
&, = F(1.05), r=1.05,n =10, a,,= 7
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Using the geometric sequence formula

= F(1.05) x (1.05¥
= (200000)(1.05)! o P= 200000
= (200000 1.62889)
=325778.92
Thus, the total amount Amna will get after 10 years will be Rs. 32577892
Grid Column Distribution (Arithmetic Series Sum of Terms)
A web designer is using a 12-column grid system where each column
increases in width by 10px from the previous one. The first column width is 50px wide.
Find the total width occupied by all 12 columns.
e vy This follows an arithmetic series with:
First term = &, = 50, Common difference = 4= 10
Number of terms =n =12
Using the formula for the sum of an arithmetic sgries:

\= 5 (20, + (0 1)d]
S, = % [2(50)+ (12 - 1)(10)]

= 6[100 + 110] = 6 [210]
= 1260px
Thus, the total width-of all 12 columns is 1260px.
Motor Vehicle Leasing Using Arithmetic Sequence
A company léases 8 motor vehicle with the following terms:
s The first monthly payment is Rs. 15,000
»  Each subsequent payment increases by Rs. 500 due to inflation adjustments.
s  The lease term is 24 months.
Find:
(i) What is the payment in the 24® month?
(if) What iz the total amount paid over 24 months?
(iii) If the company can enly afford to pay & total of Rs. 400,000, can they
complete the 24-months lease?
(iv) Find maximum months # such that total, payment § < 400,000




Given:

First term =z, = 15000
Common difference = d= 500
Number of terms = n =24
() Payment in 24® month:
Using the formula
a,=a, +(n—1)d
ay, = 15000 -+ (24 — 1){(500)

= 15000 + 23 x 500

= 15000 + 11500 = Ras. 26500
(ii) Total payment over 24 months using the formula

n
SI = E(al+n)

= % (15000 + 26500) = 12(4150(]) = Rs, 498000

(iii) Can the company afford the lease? No, total payments (Rs. 498000) exceed the
budget of Rs. 400,000 by Rs. 98,000.

(iv) Using: §, = g [2a, + (n—1)d] < 400;000
Substityting the values:
7 [2(15000) + (= 1)(500)] < 400,000

n [150004 2507 — 250] < 400,000
#(250m + 14750) < 400,000
250n% + 14750 — 400000 < 0
#4591 — 1600 <0
Associated equation is n® +597—1600=0

o ~59E(59)" —4(1)-1600)

2(1)
-591+99.4
=TT
2
—-59-90.4 -59+994
n= ,B=
Z 2

n==792,n=202

Clearly » = 20 satiefy the inequality.
Bo, 2 =20 is the maximum months such that payment 5§, < 400,000.
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P’ EXERCISE 6.11

1. A sum of Rs, 10400 is paid off in 40 mstalment such that each instalment is Rs.10
more than the preceding instalment. Calculate the value of the first ingtalment.

2. An investor invests Rs. 150000 st an anmual compound intersat rate of 6% for 8
years. Find the total amount will he get after 8 years.

3. The populetion of a town is 4084101 at present and five year ago it was 3200000,
Find its rate of increase if it increased geometrically.

4. Determine the total worth of a yearly Rs. 5000 investment after A\yem if the
interest rate is 5% compounded annually.

5. A water tank has a leakage. Eachweek,ﬂ:etnnklosenSgallDﬁsnfwater due to

the lcalage. Imuauy.thcmnkmﬁ:uandmmzmomibm

() How many gallons are in the tank 20 weekslalqﬂ(
(i) How mamy weeks until the tank is half-ﬁllli ~

(iif) How many weeks until the tank is;grﬁf{,\i
6. A drug company has manufactured 7 ion doses of a vaccine to date. They

promise additional production at a r% ai 1.4 million doses/month over the next

year. £

() How many doses ufthav@&'ﬂs in total, will have been produced after o
year? o)

(ii) Thﬁgenﬂraltmna ﬂﬂucrﬂ)ﬂﬂ the total mumber of doses of the vaccine
produced. Dusqubﬂlemmunguf&: variable n in the context of this
problem, Fmd‘begmcmlterma

(iii) Fmﬂﬂlp?aluaofauandmmretltsmeamngmwords

T Atatoll«]p@hi,lhﬂ number of vehicles passing through during the frst minute
is lﬂﬂsyue to read congestion, each minmte only 80% of the vehicles from the
previous mimyte manage to pass,

() Represent the mumber of vehicles passing each minuts as a sequence.

(ii) Find the total number of vehicles that pass through in 15 minutes.

(ili} What is the maximum number of vehicles that can pass in the long run (as

time £ 2o

8. A sum ofRs, 5000 is inverted at 8% simple interest per year, Calculate the interest
at the end of each year. Do these interests form an A.P.? If so find the interest at
the end of 20 years making use of this fact.




i

10.

11.

12

13

14.

15.

<uns

A machine iz purchased for Rs.20,000. Depreciates at 6% per snmum for the first
four years and after that 8% per anoum for the next six years. Depreciation being
calculated on diminighing value. Find the value of the machine after a period of
10 years.

Two cars start together in the same direction from the same place. The first goes
with uniferm speed of 20km/h. The second goes at & speed of 12km/h in the first
hour and increases the speed by 1 km/h each succeeding hour. After how many
hours will the second car overtake the first car if both carg go non ?

150 workers were engaged to finish a piece of work in a certain of days.
Five workers dropped the second day, five more workers the third day
and so on. [t takes 10 more days to finish the work now. Fi e number of days
in which the work was completed. @

A radioactive product has a half life of 5 if the radioactivity level is 68
microcuries after 20 years. Determinge the u%hwl of radioactivity.

An object moving in & line is given an Jmfﬁl\ elocity of 4.5 m/s and a conatant
scceleration of 2.5 m/s*. How long a]/.@t)ake the object to reach a velocity of
20m/s?

In an integrated circuit with an ipitial current of 1080 md, the temperature in the
components decreases from 17% to 14%. Assuming that each temperature
decrease is cmmadbyad@seintheiniﬁalcurmnt,whntisfhe value of the
current at fourth meas

Show that the amo 'Eacertainsumcfmrmeyntmmpuundintamlofr%per
year for n aGP.

&



Permutations and
Combinations

INTRODUCTION

In our daily life, permutstions and History
combinations play a vital role in counting | Augustin Louis Cauchy
total mumber of possibilitics, aswellasin | (1789 1857) is the futher
arrangements and sclections of objeets, | °f pemmiation.
They are used in many ficlds of science. _
Fﬂfexﬂmple Blaise Pascal and Plerre
In probability theory, permutations de Fermat (1607-1665)
and combinations are used to gave an idea to generate
compute how many times an event | ©¢ combmations  of
CHN OCCUT in Various scensrios and otum_ts. /
1o estimate the odds of winning a

lottery. o 'é.u and Leibaiz
o Hbinhuy fasssadu o » SCTE, . Aaal o

the total numbers of possible DNA:, | ombinatorics,
sEqUENCES. -
*  Incomputer science, these areuised to count the possible number of passwords of

a given length by using some specific chamcters,
»  Moreaver, thege are the important parts of many encryption algorithms to ensure
the privacy and integrity of a data set.

7.1 Fundamental Prineiple of Counting
Danish wants to prepare invitation cards of 5 different
colours (red, blus, preem, orange and yellow) by
changing any of 3 shapes (circle, square and rectangle).
How many cards can Danish make?
The problem is to count the total mumber of ways in
which Danish can make cards. One way to find the solution is by making tree diagram.
Let us discuss another scenario: Danish’s father wants to buy a table and has asked his
son to help him decide. He nammowed down his options for manufacturer, types of
material (wood, plastic, glass and marble) and types of shape (circle, square and
rectangle). Find the total mumber of table choices from the above options.
Again the problem is to count the total mumber of ways in which Danigh's father can
choose a table.




1* Way: By making tree diagram.

. Wood Plagtic Marhle Glas:
Square Rovtangle| | Square | | [Rectangle] | Square | | [Rectmgle| | Square
Circle Circls Circle

From tree diagram, it is clearer there are 12 choices for Danish's father to buy a table
with one type of material and one type of shape.
21 Way: By multiplying, Danish’s father can find the total number of table choices to
buy a table with one kind of material and shape.
Total mmmber of table choices = Total types of material x Total types of shape
=4 x 3 =12 choices

These examples show that when making a choice involving multiple stages or
categorics, we can find the total number of outcomes by multiplying the number of
options &t each stage.
Statement )
Suppose 4 and F are two events, the event 4 occurs in m different ways, and the event
B occurs in » different ways then the total number of ways that the two events one afier
another can ocour in m % 7 WaYS,

Total number of ways = mn
Proof: Let A= {a,, ay, @, -, a,} and B= {b,, by, by, --- , b, }. Let P denotes the event
that both events A and B occur together then P = {(a, b): ¢, € 4, b.e B,1<i=m,
1<j<n}=AxB. Hence the number of ways in which both events 4 and B can oceur
is the number of elements in A x B which is mn.
This principle can]:ie extended to three or more events. For instance, if event 4 can
occur in m ways, event B can ocour in n ways and ([ \SRETETIR S _
event C canrogcur in & ways, the number of ways | If three dice are rolled together, how
that three évents can occur all together is the
product m- - £
Factorial (})
Suppose there are four chairs to be occupied by four |
students and we are interested in counting all the | i
possible ways the students can be seated, (1760-1826) in 1803
To occupy the first chair there are 4 options. For the _ mTh;nuhﬂmm imﬂy]?ﬂ.lm
second chair, only 3 students remain, so there are 3 '
options. Simvilarty, for the thitd and fourth chairs, there are 2 and 1 options respectively.




Inthisway,wehmtnpcrfumlfuurmdcpcndmtwmtawrth4 3.2, andluptlons
respectively.

By the Fundamental Principle of Counting, the total number of ways to occupy all
the chairs is 4.3.2.1 =24

Such problems frequently occur im daily life, where we have to multiply the first n
natural numbers: 1,2, 3, ---, 8

We call this product the factorial of n and denote it by n! or |n, thus for a natural
number 7:

nl or [n=n(n-Dn-2)..-321
For some reason we also define ! = 1, In general, if » is a non-negative integer, then
its factorial is denoted and defined as
- { if n=0
rr—1)n-2)..3-2:1 if n21
For example, 11=1
2=21=2
31=321=6
4! =4-32:1=24
51=54321=120
6! =6-54.3.2.1 =720

It can be easily observed that
_ =pn(n—1)! for n>1
i
Evaluate% 3|Eva1uate%
e 81 B-7-6:-5-4.3.2:1 (9-8- 7)6!
Solution e =56 _
“X6t 654321 -6.3. s o
| 53T 2| Write 8-7-6-5 in the factorial L 9! _ 9876543
form. 6!3! 6543213
....... 1
e sres= Lo R 91 987654321
613l 6-54.32.1.3-2-1




P EXERCISE 7.1 {4
1. Ewaluate each of the following:
100 121 1440 _ 2400 (n+2)!
O om @ 312-3)! W) Zrar s ) (n+D)
2. Write each of the following in the factorial form:
) n’—n (i) nr—1m-2)@m-—r+1)
3. Finda, if (s +4)! =3024- ul,
4 Tgtg=E findx

5. Prove that ETJ'IIH=[| 3. 5. @-12n+ 120

6. Express as a single fraction: ((”' ii‘;‘l - E’:: llill

7. There are four distinet colored balls and four hq;l_c_lu_t 0f same colors as those of the
balls. Determine thenumberofpmsiblcwuy&lhe'balls one each in a box, can be
placed such that a ball does not go lﬂ' a box {}flts own colour?

7.2 Permutations

One important application of the ﬁmdamuntal principle of counting is to determine the
number of ways that objecmcmba@:_mnged in order.

Definition: An arrangement of all or part of set of objects in a specific order is called
a permmutation. Number ofpgﬂgiﬁﬁﬁcns of r(= n) objects taken from a set of n objects
is written as "F, or P(n,r}

nl
O) " (n r)!
Amordmg 0. Iirﬁelamezntal principle of counting:
(i) 'Ihree'hbuknufmathemnhcafmgmdesl 2 and 3 can be
arranged in a row taken all at a time (if books are distinct)
"pi=tp Wom=F<3
a3t
(3 3 0!
=31=3.2.1=6 ways
(ii) Number of ways of writing the letiers of the WORD taken
all at a time

whenr<n

FIEIEIE
CIEIGIE]
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oo




1 = Total mumber of things/objscts
#= The number of sslacted things / objecis

[ !
= 4l =i : =]
(4—4)! o
=41=4-3-2-1=24 ways
Challenge! Do you know!

Can you meke total number of  In 1974, “Emo Rubik” invented & popular
permutations for the “WORD"  puzzle, cach fum of the puzzle shows a
e . ion. of the diff i
neme of this puzzle is “Rubik's Cobe”.
Theorem: Prove that: *P, =ﬂ{u—1)(n—2)---(u—r+1)=( ) -).'
n—r)!
Proof: As there are »n different objects to fill up r places. So, the first place can be
filled in n ways. Since repetitions are not allowed, so after placing one object we are
left with (n — 1) objects, thus the second place can be filled in (n—1) ways. Similarly
the third place can be filled in (n—2)ways, and 50 on. This contimues until the »* place
which can be filled in #—(r—1) = n—r+ 1 ways. Therefore, by the Fundamental
Principle of Couvnting, rplaces can be filled by ndifferent objects in
{n—1)}n—2) .- (n—r+1)ways.
P =nn—-N(n-2)..(n-r+1)
_#Mn—Nn-2).(n—r+1n-r)l
{n—r)l

nl

-2
How- many different 4-digit numbers can be formed out from the
digits 1, 2,3;4, 5, 6, when no digit is repeated?
The total number of digits = 6

The digits forming each mumber =4

So, the required mumber of 4-digit numbers is given by:

6! 6! 6-5-4-3-2:1
p,= {6—4)1=§=—2.1 =6-5-4-3=360
In how many ways can a sel of 4 different mathematics books, 3 different
physics books and 2 different chemistry books be placed on & shelf with a space for 9
bocks, ift
(8) all the books are kept without any restriction.

H-Pr e




[TE) rermsons s omitons. < 8> —— |

(b) &l the books of the same subject are kept together.
(¢} only the mathematics books are kept together.

(a) all the books are kept without any LTINS P TP R
restriction.

Totsl number of booka =4+3+2=9 a—

iﬁﬁﬁ@@ﬁ@@ n(n—1) ... 3-2:1 i

°p =0I=0.8.7.6.5.4.32.1 5 "as 0

= 362880 ways
(b) all the books of the sams subject are kept together.

‘2.°B.’B. B =4131213
—24.6-2.6
=1728 ways
(c) only the methematics bnukaarekepttﬂgﬂth&r
‘P, “p= 416! 18

6_24 720 F EIJELE €
=17280 ways l_:,rf“,,,Q

Inhowmanywaysipmplearetobesutedonabenchif:
(8) theraareno restrictions

(b) two people can sit next to-each other

(c) two people cmnot sit next to each other.

AT BT cf[7 DT E

Niimber of ways = *F, = 5!=120 — |
(b) :rtilh:penplecanmtnexttoeach — Aand B is considered as | unit
e AT+B[7| €7 DT EF
='R.’B ﬁ?' i;:'} A FA A
L4 L3 L1

=4].21=24.2 2‘—v—']m 2 3%
= 48 ways

(¢) when two people cannot sit next to each other, then F vl (4!
= *B, — [2 can sit next to each other]
=51-48=120-48
=72 way

are o seaied on g table if 3

cannot sit next to each other? |




10.

11,

12.

13,

15.

P EXERCISE 7.2 {4
Ewvaluate the following:
® “a M@ °p (i) A (iv) "R
Find the value of » when:

G "P,=504 (i) “P,=15.14-13.12.11 (i) "P,:*2P,=540:1
Prove from the first principle that:

@ *Pr=n-"'P, (@) "Pr="'"P+r-*'P

How many words can be formed from the lettems of the foﬂuwﬁng@h’du using all
letters when no letter is to be repeated: O

) PYTHON (i) NETWORK (i) COMPUTER

How many signals can be given by 6 ﬂaguofdiﬂ’srent@ o , nsing 2 flags al a
time?

How many signals can be given by S flags of di.l?q:t volours, when any number
of flags are used at a time. ’YE\

How many 4 digit numbers can be fur@,\wnh distinct digits, with each digit

odd?
How many numbers between 10%]000 can be formed by using the digits
0,1,2, 3,4, 5 without repetiﬁon‘i\ many of them are divisible by 57

Find the numbers greater tian 35000 that be formed fom the digits
1,2, 3,4, 5, 6, without ing any digit.

Fingd the number of S-gigi that can be formed from the digits 1, 2, 4, 6,
8 (when no digit is sépedted), but

() the digits 2 2nd'8 are next to each others;

(ii) the digitw.2 and 8 are not next to each other.

How A-digit numbers can be formed, without repeating any digit from the
digim@,z,j,d-, 57 In how many of them will 0 be at the tens place?

How many 5-digil multiples of 5 can be formed from the digits 2, 3, 5, 7, 9, when
no digit is repeated.

In how many ways can 8 different books including 2 om English be arranged on a
shelf in such a way that the Bnglish books ave never together?

Find the momber of arrangements of 3 different books on English and 5 different
books on Urdu for placing them on s shelf such that the books on the same snbject
are together.

In how many ways can 5 boys and 4 girls be seated on a bench so that the girls
and the boys occupy alternate seats?




—

7.3 Permutatmn of Objects Not All Different
Suppose we have to find the permutations of the letters of the word BITTER using all
the letters. The werd BIT, T.ER consists of 6 different letters which can be permuted
among themselves in 6! ways.

We can see that all the letters of the word BITTER are not different. It has 2T= in

The replacement of the two T, by T, \’2! WF}'K'/

and T, in any other permutation will LSRR AR J _
give rise to 2 permutations, Ifthers are m, elike objectyofone kind, 7, slike
Hence, the number of permutations of "bjm“fmmﬁ“; alike objects are of

the Istters of the word BITTER taken all mmﬁ;fﬂim‘w ok

at a time. %q! [ n ]
ﬂ=6.5-4.3.2-1=36_nwm . /(* w.nl[."j[ nl,n“n’

2! 2.1

[E¥T T 7| In how many ways can the letters.of the word MISSISSIPPI be arranged
when all the letters are to be used?
[XOTTTT, Total number of letters in the word =11
MISSISSIPPI
Iisrepen_teﬂ.#tlmes = 4] ways
S is repeated 4 times = 4! ways
P is repeated 2 times = 2! ways
M comes once only = 11 ways
111

Required number of permmitations = FTRPTIETRT = 34650 ways

. Note:
Circular Permutations L : et refl | of
The permutations in which the object each other m congidered A

are arranged in a circular order are :T when anticlockwise
known as circular permutations. mmm c C ]

Circular perrmitations can oceur in two cases:

Case-I: When clockwise and anticlockwise arrangements are considered different
In a linear arrangement, changing the order of objects results in a new arrangement.
However, in a circular armangement, rotating the entire circle does not produce & new,




Mameaates (0
Forexample, supposeﬂ:reepeopleA,Bandemthng around a round table. The
following three linear armangements

A-B-C,B-C—Aand C— A—B are considered the same in ¢ircular permutations
because each one is simply a rotation of the other.

We conclude that:

3 linear permutations gives 1 circular permutation.

3! linear permutations glves 31-—-2! permutations.

Generahz:mgtheabuvendeaﬂnubjemmanmgedmacucle,themnﬁherufdisﬁnm
1

circular permutations is E=(rl—l)!.
/]

Cave-IlI: When clockwise and unticlockwise arrangémients are considered
identical

In meny real-life situstions, a circular permutation-and its mirror image are not
For example, if three beads red, blue, and black are arranged in a ring, then an
arrangement and it reflection (as shown in the figure) are considered the same.
In such cases, we divide the total number of circular permutations by 2 to eliminate
symmetrical duplicates.
Thus, in this case the mumber of distinet circular permutations is: © °
(a-1)! @ 0 ©
2
Inligw many weys can 4 persons be seated at a round table, while:
(i) clockwise and anticlockwise orders are different
(ii) clockwise and anticlockwise orders are identical.
LetA,B. C and D be the 4 persons.
()  Ifclockwise snd anticlockwise orders are different
According to Case-1
The posgible number of ways are;
=(n-1)! ways
BT AT oW s T oo Wep® o
=321 =6 ways. g B K\@/ p S g/




(iiy If clockwise and anticlockwise orders are identical

According to Case-IT
mﬂpﬂﬂﬁhﬂﬂﬂiﬁﬂﬂfﬂlﬁm—ﬂ (Q\@f}m
_@-n_
2 2
3.2
g R
A=

P EXERCISE7S 4 O

1. How many arrangements of the letters of the following wuﬂ@ﬁnken all together
can be made? -
(i) PAKISTAN (i) CURRICULUM (iii)~ ILITY

2. How many permutations of the letters of the word "BANANA" can be made, if
B must be the first letter in each arrangement

3. How many mrrangements of the letters u?ﬁx\e TRIGONOMETRY can be
made, if each arrangement begins with T and ends with Y7

4, Abdullah has a collection of 9 _ comsisting of 4 identical red marbles,
3 identical blue marbles and 2 id green marbleg. If he wants to arrange all
of them is a straight row, how 18 y distinct arrangements are possible?

5.  Inhow many different way, 3 e following persons sit around & round tehle?

(a) 8 persons = ) 7 persons {c) © persons
6. In how many ways couples =it around a round teble if no two women are
s:tungtogetheﬂ\w

7. How many 6-dfigibnumbers can be formed from the digits 7, 7, 8, 8. 9, 97

8. 15 membm:!{:o}a club form 4 committees of 3, 5, 4 end 3 members so that no
memb member of more than one committee. Find the number of
oo \

9. The D.C.Os of 11 districts meet to discuss the law-and-order situation in their
districts. In how many ways can they be seated at a round table, when two
particular D.C.Os insist on sitting together?

10. The Governor of the Punjab calls a meeting of 14 officers. In how many ways can
they be seated at a round table?

11. Fatima invites 14 people for a dinner. Thers are 9 males and 5 females who are
seated at two different tables. Guests of one sex sit at one round table and the
guests of the other sex sit at the second table. Find the number of ways in which
all guests can be seated.
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12. Find the mumber of ways in which 5 men and 5 women can be geated at a round
table in such a way that no two persons of the same sex sit together.

13. In how many ways can 8 keye be arranged in a circular key ring?

14, How many necklaces can be made from 10 beads of different colours?

74 Combinations

Suppose, a teacher uses the names of few students to make s team for & writing
competition, Such as Ahmad, Sana, Hamza and Danigh, As a combination of team
members, (Ahmad, Sana, Hamza and Danish) i8 squivalent to (Hamza, Ahmad, Danish
and Sana ). Because same students are in the combination. Consequently, you have the

same team because the order of the name of Al 1T 8 k"'ﬁ Dazial

the students does not matter. Ahmiad =
So, we are interested in the membership of the L thti

teamandnntmthswayslhesmdentsamhsted(amged)

Definition

A combination of 7 objectstakﬂnoutofnobjecfsl&aﬂubsetofrobjecta ofasctofn
objects.

The number of combinations of # diﬁ'em;!bjmtstakmrataﬁmeisdemtedby *C,

urC(n,r)or[ ]andlsgvenby C,.—

n
rtn—-r)t
Froof: Elements of & subset of r objects of a set of n objects can be arranged among
themselves in r! ways. So, each combination will give rise to rl permutation. Thus,
there will be *Cpx+l permuiations of » different objects taken r at a time that is:

r! (n r)T

Theorem. Prove that °C, =

"Crx, ﬂ'-%"Pr
nl n!
= xrl= & "om——
{n—r)! ri(a—r)!
Which completes the proof.
Corollary:
D Ifr—n then B nl _al _ The formulae®F and "C_ are also
(i) r=n, e nl(a—n)l nlo! koown 88 counting  Sormulas.
Breause, they are veed to count the
nt _ onl ‘possible number of ways without

(i) If »=0,then "Cp=

0! (m—0)] O!n! Syt




7.4.1 Applications of Combination in Real Life

Zain has § different fruits. He wants to select 5 fruits out of 8 fruits to
make 8 fruit chat. How meny combinations of fruits he can select?

To solve this problem, we have to find the mymber of combinations of 5 fruits
out of § fruits, In this situation, s =8 and r=35.

o n!
ri{n—r)!

After putting values

" 8l 8!

*Tsg—5y Sl 31
_8x7x6x5!_BxTx 6
51. 31 3-2-1

=8x 7=2356 ways
Zain has 56 different ways to select 5 different finits to make a fruit chat.
In a school, a class consists of 12 girls and 8 boys. The teacher wants to
select 5 students for an activity. In how many ways can the students be selected
including? (i) 2 girls (ii). 'S boys (iii) 2 boys
Nutnber of gitls = 12 =

Number of boys = 8
(i) Now let’s find the total number of ways to select students
when exactly 2 are girls.

2o apn 120 BY (12.11-10! 8-7-6-51_
AR TITT 35t 2.100  3.2.1.5
(ii) Let’s find tofal number of ways to select students when exactly 5 siudents are boys.

I y -7-6-5!
se, = gt _ 8 876 5'=56
51{(B-5)! 5131 513.2.1

(iil) Let’s find total number of ways to select students when exactly 2 siudents are boys.

g 2 _ 80 121 _8-7.6! 12-11-10-9!

G ST ne we 26 3210
7.4.2 Complementary Combinations
Theorem. Prove that: *C,="C,—
Proof: If from n different objects, we select 7 objects then {# — r) objecis are lefi.
Comreaponding to every combination of » objects, there is 8 combinstion of (7 — 7)

3696

=36960




o'b_leuta andvme versa. Thus, the number of combingtions of n objects takenrntatlme
is equal to the rumber of combinations of »# objects taken (7 — r) et & time.

o - nl
= G—r)ln—ntr)! Crwhenr> .
_ | For example,
ri(n—r)! “qh=“cﬂ_m=“c==ﬂ2)'m)-=6-ll=ﬁﬁ
”CH=.C; L 2 i v

o md"‘C mknmuwmplmemu’ywmbinﬁim}‘)

1| Find the number of the diagonals of a 6-sided figure..
A 6-gided figure has 6 vertices. By]ommgmytwnvmhces,wcgetahnc
segment.

" : 6l .
Number of 1 ents=%C; = —— =15
RN “ 214
But these line segments include 6 sides of the figure
number of diagonals = 156 = 9

Differsnce between permutation and'cembination

Permutation . Combination
* Order is important. A *  Order is not important
e.g., ab and ba are differant, (because eg, ab and ba are same
order of any object ig matter) {because order does not matier)
* Armangement of objecis » Relection of objects
e.g. arrangement of: e.g. selection of:
* ball of different colours * different colours
* English-alphabet (letters) * members in a team
* people while siiting on chairs ® food items

Application of Permutstions and Combinations in Cryptegraphy

IETT 12| Zain wants to generate a password for his laptop to secure the data. He
can take only 6 characters to generate a password. Each character can either be an upper
case letter (4 — Z) or digits from (0 - 9).

Can you tell how many passwords can be generated by using the sbove letters and
digits:

(i) ifrepetition of characters is not allowed

(ii)y if repetition of characters is allowed




Solution Total number of letters = 26
Totgl number of digits = 10
Total number of letters and digits =26 + 10 =36
n = total munber of characters = 36
r = required number of characters = 6
(1) [Ifrepetition of characters is not allowed, we find out total possible permutations as,
"p 3 36! 36!

*= YT 36-6)l 301
_36-35-34-33-32-31- 30!
- 30!
=36-35-34-33-32:31
=1,402,410,240 ways.
Hence, 1,402,410,240 passwords can be generated by using the 26 alphabet and 10
digits. (If repetition of the characters is not allowed)
(i) If the repefition of the characters is allowed. Using fundamentsl principle of
counting:

The total number of possible combinations = 36 x 36 x 36 x 36 x 36 x 36 = 36°
Hence, 36° passwords can be generated by using the 26 alphabets and 10 digits, If
repetition of characters is allowed.

Application of permutstions td tstimaie the odd of winning the lottery.
A box contains 15 cards from (1 — 15). Danish is to select 5 cards. If all
the selected cards are the first five multiples of 2 then Danish will win the game. Find
Danish's chance of winming the game, when

(i) order is important {ii) order is not important
'f'":= total number of cards = 15

r = required number of cards =5
(i) When order is important,

15!
(15-5)!
15!

= 251 360, 360 ways

Total possible ways="P = “E =

1
360, 360

Hence, Danish’s chance to win the game = = 0.000002775




(ii) Whennrdsnsnotlmportant
1 = Total number of cards = 15

r = Required number of cards = 5§
151
5Y15—5)
15! 15x14x13x12x 11x 101
5'10' 5. 101
_15x14x13 x12x11
T Sx4x3x2x1

Total possible ways = "C, = 'C, =

=3003 way=

Hmammm’schmemmmegam—ﬁ—oma

Application of Peyrmutstion and Combination to choose'different sets of somgs for
Certain Oceasions
On Independence Day, & DY has a list of ten different national songs. He
wants to select any five national songs for the day. Find how many ways he can select
and play the songs.
(i) if the order of playing the songs matiers
(ii) if the order of playing the songs does not matter
(i) When order matters
n = total number of national songs = 10
r = requited humber of national songs =5
Total rumber of ways="P = “B
e N ]
“@o-s s
Hence, the DJ ¢an play the five national songs in 30,240 different ways.
(ii) When order is not matter
n = total mumber of national songs =10
r = total number of selected national songs =5

= 30,240 ways

10!
Total number of ="C ="C.=—""_
- SR S T S0—-5)!
101
= 0 _252 ways
51.51

Hence, the DY can play the five national songs in 252 different ways.




10.

11.

12.
13.

14.

15.

16.

PV EXERCISE 74
Evaluate the following;
M Gy @ ™c, (i) "C, (v) *Cy

) I *C,:"C,=15:1,findm. (ii) ¥ “P. —120and *C. =20, find r.
Find the values of n and r, when

@) "C=56,"P.=336 i e "G =113:7
Prove that () C, + "C., =™C, @) r 'C,=(s—r+1) "nt:,._1 N

Prove that product or r consecutive mlergemlsdmmhlehy{
In how many ways can five subjects be selected out ot‘ Qb_]ects to select a
course programme?

Find the mumber of possible armangements of yowel lettm from the English
alphabet? Q‘;’\

In how many ways 3 dishes of Desi foo&\ d 2 dishes of Chinese foods be
gelected from 6 dishes of desi foods mdggis'h&u of Chinese foods?

Frem a standard deck of 52 playi <éu:h; there are 26 black cards and 26 red
cards, How many different waylly\g eight cards be selected if' 3 are black and the
remaining 5 are red?

A bag contains Bmdballu-‘@hd 7 green balls. Find the total number of possible

wayamwhchﬁveba]&%%adﬂctadmamy

() 3redand2 (ii) 1 red and 4 green

(iii) 4 red and 1. (iv) all the red balls

How man ‘ﬁ‘@mals and triangles can be formed by joining the vertices of the
pnlyglﬁ;%:ng 15 sides.

Find ber of sides of a polygon if the number of its diagonals is 104.

How many trisngles can be formed by joining 15 poinis, 6 of which lie on the
same straight line?

The members of & ¢lub are 10 boys and 8 girls. In how many ways can a
commitiee of 6 boys and 3 girls be formed?

How many committees of 7 members can be chesen from & group of 10 persons
when each committee must include 2 particular persons?

In how many ways can a cricket team of 11 players be selected out of 17 players?
How many of them will include a particular player?




18,

19.

20.

There are 6 men and 8 women members of a chub. How many committecs of seven
can be formed:

(i) with3 women (ii) with at most3 women (iii} with at least S women
There are threg sections in a question paper; each section has 3 questions, A
student has to solve all § questions, choosing at lcast one question from cach
section. In how many ways can the student make his choice?

Consider a cryptographic system that generates an 8-character password. Each
characier in the password can be either a lowercase letter (2 <f). or a digil
(0—5). How many passwards can be generated if each pasawe)ﬂ)nust contain

exactly 5 lowercase letters and 3 digits: \Q
() -with repetition allowed _f\
(b) without repetition /\@

On Defense Day, Teacher I compiles a list of H)distinet national songs, while
Teacher Il prepares s separate list of 10 differes ional songs (with no overlap
between the two lists). The principal needs tO.select 3 songs from Teacher I's list,
and 3 songs from Teacher I's list, _~ \.)

Determine the number of possible@gicefion methods when:

(i) the order/sequence of ﬂ:mg}éndsungs is important.

(i) the order/sequence of the velected songs is not important.

9

~
Q9
)

/



Mathematical Inductions
and Binomial Theorem

INTRODUCTION

Francesco Mourolico (1494-1575) devised the method of induction and applied this
device first to prove that the sum of the first » odd positive integers equals »*. He
presented many properties of integers and proved some of these properties using the
method of mathematical induction. In theoretical computer science, 1t bears the pivotal
role of developing the appropriate cognitive skills necessary for the effective design
and implementation of algorithms, agsessing for both their correctness and complexity.
We arg aware of the fact that even one exception or case to a mathematics] formula is
enough to prove it to be false. Such a case or exeeption which fails the mathematical
formmla or statement i3 called a counter example.

The validity of a formula or statement depending on a variable belonging to & certain
set is established if it is true for each element of the set under consideration.

For example, we consider the statement S(n)=»"—n+41 is a prime number for

every natural number . The values of the expression #*> —a+41 for some first natural
numbers are given in the table a8 shown below:

" 1 2%V 3 4 5 6 7 8 9 10 | 11
S(m) 411,43 | 47 | 53 | 61 ( 71 | 83 | §7 | 113 | 131 | 151

From the table, it appears that the statement $(#) has enough chance of being true. If
we go on trying for the next natural numbers, we find » =41 as a counter example
which fails the claim of the above statement, So we conclude that to derive a general
formula without proof from some special cases is not a wise step. This example was
digcovered by Euler (1707 — 1783).

Now we consider another example and try to formulate the result. Our task is to find
the sum of the first n odd natural numbers. We write first few sums to see the pattern
of sums.




1 1=1
2 1+3=4=27
3 1+3+5=9=3
4 1+3+5+7=16=4?
5 1+3+5+7+9=25=75%
6 143+5+74+9+11=36= 6"
The sequence of sums is (1)%,(2)%,(3°.(4), ...
We see that each sum is the square of the number of terms in the sum; Sothe following

statement scema to be true.
For each natural mumber n,

1+3+5+---4+(2r-1=n* ...(Q) o “pPterm=142(n-1)
But it ig not possible to verify the statement (i} for each positive integer n, because it
involves infinitely many calculations which never end.
The method of mathematical induction is used to avoid such situations. Usually it is
used to prove the statements or formulae relating to the set {1,2,3,...} but in some cases,
it is also used to prove the statements relating to the set {0,1,2,3,...}.
Hypothesie: A hypothesis iz an educated pusss or proposed explanation for a statement
based on limited evidence. It serves as a starting point for further investigation and can
be tested through experiments and observations. In scientific research, a hypothesis is
usually framed as a statement that can be tested and cither supported or rejected by
data.
Induction of Hypothetis: Tt refers to the process of formulating & general statement
or hypothesis based on specific examples or patterns observed in particular cases. This
technique is'ofien. employed in mathemntical reasoning to propose conjectures that
can later be proven rigorously uging deductive methods.

8.1 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a propositicn or statement S5(z) for each positive integer » is such that

1. Base Case: S(1) is true i.g., S(n) s true forn=1.

2. Imduction of Hypothesis: S(k+ 1) is truec whenever S(£) is true for any positive
integer k.

3. Conclugion: S(n) is true for all positive integers.




RS e e e <ua> matsenncs (1

Procedure for Indection of Hypothesis

s Substituting » = 1, show that the statement is true forn = 1.

« Aszsuming that the statement is true for any positive integer &, them show that it is
true for the next higher integer,

For the second condition, one of the following two methods can be used:

S(k + 1) is proved using S(k).

Sk + 1) is established by performing algebraic operations on. S(X).

Use mathematical induction to prove that 3+ 6-I-9-|—._+3n=@ for

every positive integer .
Let 5{(n) be the given statement, that is,

Sn): 3+6+9+_.+3n= @

Base Case: Whenn=1, S(1):3 = wﬂ. Thus (1) is true Le., The base
case is satisfied.
Induction of Hypothesis: Let us assmn:_fjjnt__ﬂn) ia true for any n = ke N, that is,

S(): 3+6+9+..+3k = —3“(’; D (A)
The statement for m = A+1 becomes
34649+ + I LIEH]) = 3(“1)[(2"”1)*1]
_ Xk+1XEk+2)
= (B)

Adding 3(£*+1) on both the sidss of (A) gives
3460+ ... +3k+3 (k) = W+3(k+l}

= 3{1;+1)(;+1)

_3E+DE+2)
- 2
Thus S(k + 1) ig true 1f $(k) 18 true,
Conclusion: Since both the conditions are gatisfied, therefore, S{n) is true for each
positive integer ».
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Use mathematical induction to prove that for any positive mteger n,

P+2*+3+..+n'= —”{“H}f# +

FIITTTE, Let S(n) be the given statement,

S@): 1P 427 43 4,452 = 22 D14
6
Base Cases 1t~ 1, S(): (07 = 7 2552 = P2 <1, which s tue. Ths

(1) is true, i.¢., The base case is satisfied.
Induction of Hypothesis: Let us assume that S(%) is true for any k< N, that is,

Sk P+22+3 +..4K = w (A)
S+ P42 43 4o+ P+ (k417 = (*+1J(*+1’;1)(2k+1+1)
_(+ 1)k +62) 2k+3) ®)

Adding (k+1) to both the sides of equation Q),.Wehwe
P+2+3 4+ +E+(+ 1= WH.EH}’

_ (R +D[k2E+ 1)+ 6(k+1)]
_{k+D(2%" +2+ 6k+6)
={k+1)(2k’j-7k+ﬁ)
=(k+1)(k-f2](2k+3)

6

Thus, formula helds for &+ 1.
Conclosion: Since both the conditions are satisfied, therefore, by mathemstical
induction, the given statement holds for all positive integers.
3
| B3I 3| Show that i ;2" represents an integer Yne N.
3

Solution BT (O Tk ;2“ e Z¥ne N
P+20) 3

3 3

Base Cage: Whenn=1, §(1)= =le Z. The base case is satisfied.
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Induction of Hypothesie: Let us assumme that S(n) is itne for any n =k € N, that is,
kK +2.E
Stk) = represents an integer.

Nowwewanitﬂ show that S(k + 1) is also an integer. Form = £ + 1, the statement
becomes

SE+T) = (F+1y + 2k +1)
3

_ B +387 +3k+1+2k+2 _ (K°+2k)+ (38 +3k+3)

3 3
3 3 i |

s (K" +2k)+3(k" +&+1) = k +2}+(k’+k+1)

3 3
k=+2k.. s ' 20 . s
As is an integer by assumption and we know that (8 + & +1)is an integer as

ke N. S(k+ 1) being sum of integers is an integer, Thus statements holds for k+ 1.
Canclusien: Since both the conditions are satisfied, therefore, we conclude by
3
" sl Tndicton thit n ;23
values of n.
LATENIT 4] Use mathematical induction to prove that

represents an integer for all positive integral

1
3435435+ 435 = 3(52 D , whenever # is non-negative integer,
EZITTTIN, Let S(n) be the given statement, that is, The dot () between two
xsﬂ-l._l) mumberer  sEnds for
S(m):3+3-5+3-5 ++.+3.5 == multiplication aymbaol.
1 — —
Base Case: Forn =0, 5(0):3-5°= w or3= = 3

Thus S{0) is true Le., The base cage is satisfied.
Induction of Hypothesis: Let us assume that S(k) is true for any ke W , that is,
35 -1

S(®):3+3-5+3-5+ 435 == (&)
Here S (k+1) becomes
S(k+1):3+3-5+3-5’+...+3.5i+3_5h1=3(5‘*"4"*1_1)
3 5&1-2 -1
_ 367 1) &)

4
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Adding 3.5""'on both sides of (A), we get
3(5h -1

34+3:5+3- 5 et Ju 5t 1 3.5%1 = A7, g g4

_ 3(5“1 —1+4.55

4
_As*a+ -1 35+ -1)
2 4

This shows that S{(% + 1) is irue when S{k) is true.
Conclugion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(») in true foreach ne W.
Prove that 4" +6n — is divisible by 9 forall ne N'
Let.S‘(n)beﬂ:egiven statement,

S(r)=4"+6n-1 i divisible by 9 for all ne N
Base Case: Putn=1, S()=4"+6{1)-1=4+6-1=9"

Which is divisible by 9. Hence it istrue forn =1,

Induction of Hypethesis: Suppose the statement is true forn = k. i.e.,

S(k)=4* +6k~1 is divisible by 9 (A)
This implies S(k)=4* + 6k —1="5k for some integer &,
4 +6k—1=9%
Nowpmta=k+1,

SE+D) =" +6(k+D)-1=4-4 "+ 6 k+6-1
=4(9k, — 6k +1)+6k+6-1
=36k — 24k +4+6k+5
=36k —18%k+9
= 9(4k —2k+1) ®B)
Which is divisible by 9.
Thus 8(£) is true forn =k + 1.
Conclugion: Since both the conditions are satisfied, therefore, by the principle of
muthemsﬁcalinducﬁun,th:givmstatemmtismmfuraﬂintcgmn 2L
Use mathematical inductien to prove that
n
Z(Zk l(2k+1) 2n+1

» whenever » is a positive integer.
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LetS(n)bethe given statement, thai is,
1 .

8n); i(ﬂr—l){ﬂ:ﬂ) T 2p+1

1 1
BAERANe Forn = 1, S(1); E(z& D(2k+1) 21+1°

1 1 1 1
- = = —=—
1-3 2:1+1 3 3
Thus 5(1) is true i.e., The base case is satisfied.
Inducﬂnnufﬂypnthemrl.etuuassums that S(#) is true for n = m, thatds,

Yom: Z(ZJ: 1){2k+1) 2m+1 &
Here S(m + l) beoomes

m 1

St 1) Z(z& 1)(2k+l) zm+1+(2m+__1](m-+3)
m(2m+3)+1 2m +3m+] . (m+1)(2m+1)

T (2m+1}2m+3) (2m+1)(2Zm+3) (2m+1)(2m+3)
_ m+1 m+1 . m+1
2m+3  2m+2+1 2{m+1)+l ®)
This shows that Sk + 1) is true when S(%) is true.
Conclugion; Since both the conditions are satisfied, therefare, by the principle of
mathematical induction, $(#) intrue foreach ne N.
8.1.1 Principle of Extended Mathematical Induction
Let i be an integer. A formula or identity or statement S{n) for n > i is such that
1. Base Case: 5(i) is true and
2. Induction of Hypothesls: S(k-+1) is true whenever S(k) is true for any integer
n2i.
3. Conclogion: 5fn) is true for &l integers n2i.
[ETTTa 7| Show that 1 +3 45+ --- + 20+ 5) = (#+3)” for integral values of n 2 2.
Base Case: Let S(n) be the given statement, then for n = -2, 8(—2) becomes,
2-2)+5=(2+ 3, ie., | = (1)* which is true.
Thus S(-2) is true ie., The base case is satisfied.
Induction of Hypothesis: Let the equation be true forany # =k Z, k 22, 50 that
SE:1+3+5+ - +(2k+5) = (k+3) (A)
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S+ 1143450 H2k+5)+ QEk+1+5)=(k+1+ 3 = (k+4)® (B)

Adding (2k+1+ 5) = (2k + 7) on both sides of equation (A) we get,
1+3+5+ - +(2E+5)+Ck+7) =G+3P+(2Z%+T7
=P+6k+9+2k+7
=+ 8k+ 16 =(k+4)

The formula holds for £ + 1.
Concluzion: As both the conditions are satisfied, so we cenclude that the 5{(#) is true
for all integers n=-2.
[ATTiTil 8| Show that the inequality 4* > 3" +4is true, for integral values of n2 2.
Let S(n) represents the given statement ie., S(n): 4" > 3" +4 for integral
valuesof 222
Base Case: For n =2, $(2) becomes

S(2): 4" >3% +4,1e, 16 >13 which is true

Thus S(2) is true, i.e., The base case is safisfied,
Induction of Hypothesis: Let the statement be true for any n = k(= 2) Z, that is

S(k): 4 >3+ 4 (A)
Multiplying both sides of inequality (A) by 4, we get
44% > 43"+ 4)
ar 4" 5 (34+1)3F +16
or 44 5 38 L4303k 12
or 4" 530 1y (- 3*+12>0) B)

The inequality (B); The formula holds for £+ 1.

Concluglon: Since both the conditions are satisfied, therefore, by the principle of
extended mathematical induction, the given inequality is trus for all integers n22.
[ZTrTn8|If a, = 27 + 1, then forn > 1, show that last digit of @_ is 7.
Wewi]lprﬁve the statement by mathematical induction.

Base case: Forn=2

a,= 2% +1=2%+1 = 17. Clearly unit digit is 7.

Inductive Hypothesis: Assume thatq, = 22" + 1 = 10m + 7 where &> 1 and m is some
positive integer.,




Now, @, =2" +1=2"211

=(21*) +1=(10m+6)*+1

= 100m? + 120m + 36 + 1

=100m? + 120m + 30+ 7

=10{10m? + 12m+3) + 7
Thus, last digit of a, is 7 for all n > 1.
Conchuslon: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, the given statement is true for all integers 2 >1.
8.1.2 Real Life Application of Mathematical Induction
Mathematical induction iz a powerful method used fo prove. statements that are
formulated for natural munbets. It ig often nsed in mathermaties to justify conclusions
about sequences, series, and other constructs that involve integer values.
Faris starts a savings plan where he deposits 1,000 rupees into his bank
account every month. Using mathematical induction, prove that the total amount saved
after » months is given by:

8(n) = 1000 x n rupees

where z is a positive integer repregenting the number of months.
EfITTT\Given staternent $(x) = 1000 x »
Base Case: For #n = 1: After the first month, Faris save 1000 rupees. Therefore, the
total savings after one month is 1000 X 1 = 1000 rupees. The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer &,
Le., after & monihs, the total savings is §{(&) = 1000 x k rupees.
Now, prove that the statement holds for £ + 1 months; After k +1 months, you would
save an additional Rs. 1000, so the total savings becomes: §(&+ 1) = 1000 x £+ 1000
= 1000 x (& +1 Y rapees. Thus, if the statement holds for £, it also holds for £+ 1.
Jmt[ﬂcnﬂnﬂ;'hd Communication: Using mathematical induction, we prove that
gaving Rs. 1000 monthly for » months totals 1000 x mrupees.
The base case (# = 1) holds, and assuming it's true for § months, we show it for £+ 1.
Thus, the statement is valid for all natural mumbers #, making it reliable for real-life
applicafions.
LEET A1 | Al starts a daily exercise routine where each day he increases the number
of push-ups he does by 2. On the first day, he does 10 push-ups. Prove that after %
day, the total number of push-ups Ali has done is #* +97
Hate Case: For » = 1: On the first day, Ali do 10 push-ups. Total push-ups
(1 + 9(1) = 10. The base case 5{1) holds tre.
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Induction of Hypothesls: Assume the statement is true for some positive integer k,
i.e., the total mmmber of push-ups afler k days is S(k) = k> +9&.

Now, prove it for £ + 1 days: On the (£ + 1)th day, you do 10 + 2 x & push-ups. The
total after & + 1 days becomes: &+ 9k +(10+2k)=&* + 25+ 1+9%+9

= (k+ 17 +9(k+1)

The formula helds for $(X+1).

Conclusion: By mathematical induction, the total number of push-ups after » days iz
" +9n

[T 12| Suppese you aim to lose weight by reducing your celeries intake by 50

calories gach week. If you start at 2500 calorics, prove that after # weeks, your daily

mtake iz 2500—50n calories.

Base Case: Forn=1: After 1 week, your intake is 2500 — 50 = 2450 calories.
The base case S{1) holds true.

Induction of Hypothesis: Assume the statement 18 trie for some positive integer &,
i.e., after k: weeks, your intake is 8(%): 250050k calories.
Now, prove it for k + 1 weeks: Aflerk + 1 weeks, your intake will be:

2500 — 30k — 50 = 2500 — S0(k + 1) calories. The formula holds for ¥+ 1.
Conclusion: By mathematical induction, your daily intake after n weeks is 2500—50n

calories.
P EXERCISE 8.1 _J
1. Use mathematical \nduction to prove the following formulae for every positive
integer ».

(i) logx®=nlogx, where x ig positive
() 2+5+8~+..+@n—1)= %(3» +1)

(idi) 2+(2+5)+(2+5+8)+---+%(3n+1)=%(n+1)2

(iv) 2+6+18+~ +2x3"1=3"-1

(V) Ix3+2x5+3xT++ax(2ntl)= nin-+1) (4n +5)

6

1 1 i 1 1

vi + e =1-
) e 23 axd e D mel
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10.

11.

12.

Unit ) b rimiint AU saneanes (I

A=r) el

=r

(vii) 7+ +r+ 7=

(Vi) @+ (a+d)+(a+2d)+ - +[a+ (n-1)d] = {24+ (a-1)d]
(ix) a,=a@ +(n—0)d whena,a +da +24..fooman AP
(x) a,=ar" when a,qr.ar’, .. formaGpP.
@ (5 (3 (3 (37 H()
3 3 3 3 4 \\L...
O

{xii) The sum of first # odd natural numbers is #%,
Prove by mathematical induction that for all positive integg ues of &

@) #*+n is divisible by 2 (i) 5" —2"is divisible by 3
(iii) 8x 10" —2is divisible by 6 At

a ol i
Provcthaer‘zr ],whenﬂvcrnisapo" C mteger.

e o

x—yis a factor of x" — y" forall pomﬁ(éjmtbgml valugs of n, (x = ¥).

al> 2" —1 for integral values of n;)ﬁ-/;.:/

4" > 3" 4+ 2% for integral valuﬁ?f_n 22,

l+mr<(l+x) forn22and £5-1.

Aliza invests Rs. ],GUD,H(C'{I& a business thst promises & 6% return compounded
anmally. Prove by mtra@ﬁmnnsal induction that the amount of money after n years
is 1,000,000(1 .06_}”14;;.'\

A bank offers anifivéstment with an annual interest rate 7. If P rupees are invested,
ﬂ]emmnl‘q@srnye&m is given by: A(n)=P(1 +r)

Prove b{)iﬁ.ﬁnstinn that this formula holds for all » > 0.

S aves Ra. 500 in the first month and increases his savings by Rs. 500
every subsequent month, Using mathematical induction, determine whether his
total savings will reach st least Rs. 12,000 after 24 months,

Prove by mathematical induction that if Ali takes a loan of Rs. 2,000,000 and
pay Rs. 50,000 at the end of each year, the remaining balance after n years is
R = 2,000,000 — 50,000n.

If Salman start savings with Rs, 5,000 and saves an additional Rs. 1,000 at the
end of every month, derive a formula S(n) for his total savings afler » months.
Prove the comreciness of year formula using mathematical induction.




8.2 Binomial Theorem

An algebraic expresgion consisting of two terms suchas e +x, x— 2y, ax + b ete,, is
called a binomial or a binomial expression.

We know by actual multiplication that
(a+b) =a* +2ah+h* ()
(a+h) =& +3a’h+3ah® + b (i)

The right sideg of (i) and (ii) are called binomial expansions of the binomial
a + b for the indices 2 and 3 respectively.

In general, the rule or formmla for expansion of a binomial taised 1o any positive
integral power n is called the binomial theorem for positive integral index 2.

For any positive integer n,

@+ by = [;Ja" + [r}z"'lh + (;Ja"’fﬁ " ---+(: l]a’(-r-"w-l
+[:]a""h' o +[;J"”” +(:]H" (A)

or brefly (a+ /)" = i [n]a""h', where @ anil / ire real nummibers.
r

Fmi)

The rule of expansion given above is called the binomial theorem and it also helds if 2
or b is complex. :
Now we prove the binomial theorem for any positive integer n, using the principle of
mathematical induction. :
Proef: Let S(n) be the statement given above as (A).

: 1 1
Base Case: ifn=1, we obtain § (1): (a+5) = [{Jal +(1]0Hb=a+b which is true.
The base case is satisfied.
Induction of Bypothesis: Let us assume that the statement is true for any n=ke N, then

Sk (a+b) = [k] & +[k] a"“b+[kJ ol i +( X Jd“"“b"l +[kJa"" 8
0 1 2 r—1 r
k 1 k &
o+ nes +[k_l}ab‘°' +[k}b (B)
Stk+1): (a+5)™ =[k;1] "H"'(kil-l) a*xb+(k;1] alx bt 4 -

+ [k+1)a"“‘+=xb"‘ +[k+lJa"”1x b+ +[k+l)axb* +[k+1Jb”1 (C)
r—1 r k £+1




<isi> Msthematics

Multlplym,g both sides of equation (B) by {(a + ), we have

N I R P
(o[} 1}_,,“[:)9]
- [[; },w +[:‘ Ja'b+[:}r“b’+ +[ ¥ Jat—wbﬂ
({2 ]
A A
+@m+...+[; ]a(*},]
(e M-
(0 e A e
s (oo M= LS Jmoeres
(a+b)m=[k;1)n’”+[k ;"]a*m[’f;l}l—lbu
. {*:‘]m[:ll - ©)
GYYEH-()=

We find that if the statement is trus for n =k, then it is

also true for n =k +1.

true for all positive integral values of ».

The following peints can be obaserved in the expansion of (g + b)*

(i) The mumber of tenms in the expangion is ome greater than its index.

(ii) The sum of exponents of @ and x in each term of the expansion is equal to its
index.

(1ii1) The exponent of g decreases from index to zero.
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(iv) Theexponentofb increases from zero to index.
(v) The coefficients of the terms equidistant from beginning and end of the expansion

RGN

"
(vi) The (r +1)® term in the expansion is ( ]a"’b’and we demote it as 7., ie,
r

(2w
r

As all the terms of the expansion can be found from it by puttingr=10, 1, 2, -+ , n, so
we call it as the general term of the expansion.

6
IB 10013 BExpand [%—3] and alzo find its general term.
a

o 5252

T, ,, the general term is given by
6V a Y7 2Y _ (6 -
T [ ](?] =] [ }F e
ol gl 2]
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14| Evaluate (9.9)° using binomial theorem.
(9-9)’ =(10-0.1)*
= (10) +5x (10)* x (~0.1)+ 10(10)° x (~0.1)% +10(10)° x (~0.1)*
+S(10X=0.1)* +(~0.1)
= 100000 — (0.5)(10000) + (10000){0.01) + 1000(~0.001)+ 50(0.0001) — 0.00001
= 100000—-5000+100—1+ 0.005—-0.00001

= 100100 .005 — 3001 .00001
= 95099 .00459

1y
T B15) Find the specified term in the expansion of [%x—%) :

(i) the term involving x° (i) the fifth texm

(iif) the gixth term fromthe end  (iv) coefficient of theterm involving x77,

11
(i) Let T, be the term involving x*in the expansion of [%x—i) , then

L) h

1l-r 1131+
- (1:] S AT = {—l)"[ , )321—1., i

zll—r
As this term involves x°, 50 the exponent of x is 5, that is,
11-2r=5-0r —2r=5-11=r=3
Thus T, involves.x’

3t 11-10-9 3°
= (—] L6 = 5
( )J[ }z‘” TN,

165- 243 40095 s
———— %' = x
256 256

21 4321 7

_11:18-3 27 , 16527 , _ 4455
1 '123”3' 64 d 54”3

- 1),{11] 3 e _ 1110-9-8 3
o 3= 11-10-9-8 3
4




(ii1) The 6th term from the end term will have (11 + 1) —6 that is, 6 terms before it,
1t will be (6 + 1) term, that is the 7™ term of the expansion.
11 312 11-10-9-8.7 37
Thus T, = (—1)° Mooy = 7 =yt
T ( ) [GJZII—Q 5.4.3.2:1 25 *

_ llxﬁx?‘ 1 1 77

1 3x32 x 16x
(iv) % is the coefficient of the term involving x~'.

8.2.1 The Middle Term in the Expansion of (a + 5)"
In the expansion of (a + b)", the total number of terms is # + 1

Case It (» is even) If »# 18 even then » + | is odd, so [%+l] “term will be the
only one middle term in the expansion. -l
CHEII:(uilndd)ifnisnddﬂmnn+1iscv=n*ﬂg["ﬂ+|] a.ndl

2

i+ 3
2

] terms of the

expansion will be the two middle terms.

12
|ZTT0l316 Find the following in the expansion of [§+%] :
&

(i) the ferm independent of x (ii) the middle term
(i) Let T, be the term independent of x in the expansion of
¥ ik
X 42 then
( 2 x

T )
T r 2 xﬂ
12~ 123 . . 1
=[f}2172_r. 2 _xﬂ =[r]22 u_xIB—S

As the term is independent of x, so exponent of x, will be zero.
Thatis, 12-3r=0=>r=4.

Therefore, the required term T_= griz o 12:110-9 4
s 4 4321

11x 45 _ 495

2! 16
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- 1h
{(ii) In this case, n =12 which is even, so |IT_'H] term is the middle term.

2y = Y (2Y
T, =[6J(T} [F) Because T;is the required term,

:[12]1_‘ 2° _ 12x11x10x9x8x 7 e

6)2° X7 6% 5x4x3Ix2x1
_12x11x7 924
- & ="s

X X

8.2.2 Some Deductions from the binomial expansion of (@45 )"
We know that

(a+b)‘=[:]a"+[;']aﬂb+(;]aﬂy+...

+{:]a""bf-|'-.,..+[n: ]ab""+{:)b" (&)
(i) Ifweputa=1,in(A), then we have;

.:m,)-{;H;]b+[;]b=+...+[:]g.+...+-[nj l)y—1+[:}b» ®)

=1+nb+¥b‘+---+”(h_l}(”_2)!'"("_r+1)b'+---+nb"‘+b"
;
y l’n" ! _jz{n—l}:---:{n'—r-i-I;l[n—r}! _ aln—L)(n—r—1)

ey el (n—r)! Ll in—r)! r!

@) Putting a =1 and replacing b by—b, in (A), we get.

(a-&y ={:)+m(_b) +(:](-b)= +('3')(_;,)= s +[n'il)(_b)._. +(:) _
o2 pren()

(iii) We can find the sum of the binomial coefficients by putting ¢ = 1 and
5=1in(A).

oo o= (D)2} e (7 o)
o 2 (RO

Thus, the sum of coefficients in the binomial expansion gquals to 2°,




{iv) Puiting a=1 and /' =-1, m (A), we have

e G ety
:s[ﬂ'[z;[il'[;zm v 2 Jen (7)o

R ()

If » is even positive integer, then

(;}[;}...{:H;‘}[;}...{; 1]

Thus, sumnfuddmefﬁcwmsofahmmalexpmmnequahtothzmnnofﬂxeven
coeflicients.

Show that: [; J+z[: ]+3[; )+[ ) poa
] n n n _ aln— 1) n(n—l){n—!)
(1 J+2(2 J+3[3 }4—“-4‘”[“.] n+2 2 31 I |

= n[1+(n 1}+w+ --+1]

- Y Ly B

P~ EXERCISE 82 _J

1. Using bindmuil theorem, expand the following:

0 [3-3] @ (2] @ ({T-Z]

2. Calculate the following by means of binomial theorem:

® 97y () (2.02) (i) (9.98)° @) @1’
3. Expand and simplify the following:
@ (a+v2x)f +(a—v2x) @ (2+v3) +@-+3)

4, Expand the following in sscending power of x:
@M (@+x-x2) @ Q-x+x*)
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1 i*md the term involving:

13
(i) x*in the expansion of (3—2x)7 (ii) x*in the expansion of [x—%)
x

g
(iii) @* in the expansion of [i—aj (iv) »°in the expansion of (x_\/;)"
x
6. Find the coefficient of;

in
() x"in the expansion of (x’ —%J (ii) x" in the expansion of [.t’ —i]
x

10
7. TFind 6™ term in the expansion of (r" - zi J .
X

8. Find the term independent of x in the following expansions;™"
’ 10 19 4
@ x-ij Gi) (JE ; i] (i) iﬂ.)f[n i]
. == 2x* x?
9. Determine the middle term in the following expafisions:

(1 2Y s o | 1Y
o (53] @ (3xa) il

o e Ch

8.3 The Binomial Theorem (When the Index » is a Negative

Integer or a Fraction)
Whﬂnnmanegnuvemtpgegoraﬁncunn,ﬁen
n(n 1) - nin— 1) (n 2) o

n(r: D(n-2) - (n r+l)xr

(l+:s)" 1+ nx+

_' rl
prmndﬂd | x|<1.
] owln—1)y . mn—1}n-2) . ]
The serica of the type 1-mx+ 2!'1’—. 3l X + - is called the
binomial series.
® The proof of this theorem ix beyond the scope of this book. 7
® Symhﬂl[:}[;).(:]mmw_euwhmqhnngguﬁveiﬁt:’germl
fraction.
» The general term in {he expmsionis 7, =!':{‘n'_1) (n-i)---(n—rﬂif_
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(5 C00018) Find the general term in the expansion of (1+ %)™~ when| x| < 1.

Solution T, = DA ) - (B-rt])
ta r!
_ -1Y-3-4-5(r+2) iy 12345042,
! 4 D 1-2-1 *
1y l"l-[r+1){r+2)_lEr =(_1),(r—!-1}(r—2)x,
2! 2

Some particular cases of the expansion of (1 +x)*%, m <0
@) Q-+ =1l-a+2 &+t (I E .
(D O+ =1-25+32 4+ A+ E+Dx"+ O
@) (27 =132+ 6% —105° + w4 (1) W’”
(iv) (-2 =l+x+2 +x" + b2+ o '

(v) (—2)"=1+2x+3"+4x" + -+ (r+ D + -

(vi) (l—x)° =1+3x+62"+10x"+ +m;r+2}x' o

Find the coefficient of x" in the expansicn of

I, 5, 2 =0- 902
=(—x+ l)[ 1+(—IL?.::¢)+—.(—.2)2:':_3\).a:2 OO . & o e s ]

r!
=+ DIL+ (D26 (1P30% + -+ (1Y % e+ 10"+ 1]
= (= + DI+ (=02 + P32 + - + 1P ™=+ PG+ Dt ]
Coefficient of x* = (=1) (<1 n+ (1P (n+1)
= (-1)a+C0)"(n+D) = )+ (r+ 1] = 7 (2r+0)
If x is 50 small that its cube and higher power can be neglected, show
1-x 1 ,

that |— " =& l-x+—x
1+x 2

I_—I =(1—x)”2 (1_,_‘.‘)—1.‘2
\1+x

- 1+%(— M(—:}’%-- 1+[—?l]x+(_%J[_li_l}x’+---

1-x
1+x)*




11 3.1 1, 1,
=1+ e+ 2+ |+ ml—xi—
(2+2)x+[8+4 s]x fe mlmt

3
For y%[i} L3 (i]‘ " 1-3-5[1) B

9 J 2211\ 9 23 9
show that 5% + 10 y—4=10
1 3
Solution y=L[iJ+£[iJ +E(i] SR {A}
2.9 42i1f 9 83\ 9
Adding 1 to both sides of (A), we obtain
2 |
1( 4 1-3( 4 1-3-5{ 4.7
1+"'l+7[7]+ﬁ[?] ¥ 3-3!'[TJ e ®)

Let the series on the right side of (B)bé identical with
n(n—l)x,_l_u i':—l)(ili,'—':!)lxEI s
2! ‘3]
which is the expansion of (1+x) for| x | < 1and » is not a positive integer.

1+ nx+

By comparing terms of both the scries, we get

=55 ®

an-1) o 013, 4Y 3
TR 4.21(?) (ii)

From (i), x =% (i

Sl =% SR

n(n—l)(2j=i_ 16 _ ap-) 4 _3 16

2 (9n

8 81 2 8l# B8 81

o 2(n—1)=6n or n—1=3n=>u=—%




or J5(1+3)=3 (i)
Squaring both the sides of (iv), we get L
51+2y+3)=9 ot 5 +10y—4=0. =D

P _EXERCISE 83 4 ~©
1. Expand the following upto 4 terms, taking the valnes ofxsuch that the expansion

in each case is valid:

@ a+x)" () (4-3x)"* @iy, L{l:})ﬂ (iv) ‘:_:"’

2. Find the coefficient of x” in the expansmn nl‘

2 1+ (1+x)*
O ey 6y
3. Ifxisso small that its s.quar_ei_a.nﬂ higher powers can be neglected, then show that:
1-x 3 O . Al+2x 3
w]l-—x" 1+ —
W a0 G =l
(9+'?x)"1-—116+3.r)"4 1 l‘? .y VA+x o 25
(ii) CB+ 52 e 4 et @ 0 24+ %

4, Ifx isgqq;_.mhll that its cube and higher power can be neglected, show that:
(i) 1}1;.1:—2.1:’ ml—ix—ix’ (ii) 15 m1+x+ix
2 8 1-x 2
5. Ifyxis very nearly equal 1, then prove that px® —gx? = (p—g)x"*?
6. Identify the following series as binomial expansion and find the sum.

i LY, B LY B 1 -
241 4 2141 4 318
1 13 1:3.5
S L —
PRTRTY Ta

7. Use binomial theorem to show that 1+
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1. 131 % 13871Y oy =
B. l[J*_ ?MPE[E’IT 3 [;)"‘ﬂ [310'-'3.]1&1}’ +T—y-—2—ﬂ.
1 . . 3. 5
g.‘ 1f 2y = L%ﬁ. _I_*& F Lq- - pmeﬁlut 43;: + 4};-1: )]

P T 8

10. Show that the coefficientof ¥'in —— s 29,
(1-pxXl-gx) p-4

8.4 Binomial Coefficients Using Pascal’s Triangle

Binamial coefficients arise in the binomial expansion of powers of a binomial
expreasion, such as {x + y}". These coefficients are denoted by:

ny_nl
[?‘J —m,“’hﬂ'ﬁﬂﬂrﬁﬂ.

Pascal'sTnangle;n‘oﬂdesauombmﬂmalmﬂmdtﬁwmpumbmmal cocfficients
without directly using factorials. The construction of Pascal's triangle follows these rules:
1. The first row (corresponding to » =0) consists of a single entry:1.
2. Each subsequent row begins and ends with 1.
3. Everymtennrentrymthesumnfthetwoenﬁlesdlrectlyabuvmtfmmﬂm
PrEVIOUS row.

0
1
2
3
4
5 s‘\(\i’
6
7

‘:; {:@a‘*’ ;

Mathematically, this is expressﬁdby Pascal': Rule.

), e

The entries in the n® row of Pascal's Triangle correspond to the binomial

s )1}

For example, the binomial coefficients comregponding to n =4 are:

AR
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Expand (x + y)* using Pascal’s triangle.
The'binnmia.‘l coefficients for the expansion of correspond to the entries in
the »=4 row of Pascal’striangle: 1464 1
Thus, the binomial expansion using Pascal’s triangle is

x+ ) =1 +4y + & g + 1
()t =t + 4y + 6B +4m + 5
LS i023] Expand (x —2)" use the binomial theorem and using Pascal’s triangle.
EXITTT Expand uging Binomial Theorem:
(x-2Y=3Cox’ (-2)' +3C1 L 2) + Q-2 +5C 3= 2P
+3C 542+ 30— 2)
=x—10x"+ 405 - 80 x> + 80 x - 32.
The binomial coefficients for the expansion of correspond to the entries in the
n=>35row of Pascal’s triangle:1 5 10 10 5 1 |
(@t bY=Ca " +3C\a*H +3C, a8 P +3C: @ P +3Ca B+ 3Csa" B
Replace binomial coefficient from Pascal triangleand a=x, b =-2
=2 = 2+ D H 10522 4 10 5= 20 + S (- 2)*+ (- 2
=x"-102*+40x* - 80 x° + 80 x—32,
8.5 Applications of Binomial Theorem
8.5.1 Finding Approximate Value Using Binomial Theorem
Approximations: We have seen in the particular cases of the expansion of {1+ x)"
that the power of x goes on inereasing in each expansion. Since |x| <1, so
| x ‘r <| JE| forr=2,3,4, ...

This fact shows that terms in each expansion go on decreasing mumerically if [x <1.
Thus, some mitial terms of the binomial series are encugh for determining the
approximate values of binomial expansions having indices as negative integers or
fractions.
Sommation of imfinite series: The binpmial series are conveniently used for
summation of infinite series. The serics (Whose sum is required) is compared with
aln=1) o np=D(n=2) ;

P 3! e
to find out the values of & and x. Then the sum iz calculated by putting the values of n
and x in (1+x)".

1+ nx+
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Enmple 24| Expand (1— 2x)"*to four terms and apply it to evaluate (0.8)"” correct
to three places of decimal.

Thiscxpmmiunisva]idonlyifpx‘{l or 2|x| <1 or|,-.':-::% .that is
i)y, 36070
(1-2x)" = 1+—(-2x)+ 20 (-2x)"+ pT (2 *
Tu W ies .
Z_ .3\ 3 3U 3\ 3 ;
A 4
TR Fa 321 %)
2 4, 125 1
IR R T T Ll
-t A W s
37 9 8l
Putting x =.1 in the above expansion we have -
(1-20.p)" 1——(0 ) (o.lf—g(q.lj"-...
n.z 0.04 0.04 < e
R +40% 0,001=0.04)

= 1— 0.06666 —0.00444 — 0.00049 =1-0.07159=0.92841
Thus (.B)”’su- 928
Alternative method:

(08 =(1-02)%=1 “2 1(1 )(-nz;h%[%_ (%_ )(-0.2)3+...

21 3
Simplify onward by ynurself.
Evaluate 3/30 comrect to three places of decimal.

Y30= (0% = (27+3)3

3 113 1 173
= [2‘?(1+—]] =(2‘?)”3(1+—]
27 9
= 3[1+l]
9




b4 e )

& 3 [1-+0.03704—0.001372] = 3 [1.035668] =3.107004
Thus 330 =~ 3.107

8.5.2 Finding the Remsainder Using Binomial Theorem
Using binomial theotem, find the remainder when 5% is divided by 13.
I, =55 =5 (7Y°=5- 25

=5(26-1)%

el (A9 ass [ e paa  [49 B ¥ 493, o.a
5[[0J26“1 [1]261+[2J;6‘1+... 49 61
4 4 -
=5{26"—[ 9]26%( 9)26‘-“4—..-.—1]
1 2
49 45
=S-26“—5-[ g J26“+5-[ " J26“+---—5
493 4
=[5- 26% 5. [ ,'19]26“ + 5-[ ;}2@? +,..—13]+S
=13k + 8, where k is an integer
Hence, 8 is the remainder when 5% is divided by 12,
(BT i027] Using the binomial theorem, show that 11— 10 leaves a remainder 1

when divided by 100 for all positive integers n.

11" =(1+10)" = [;J o’ +[’1‘]1""ml +[:]1"'*10’ +[:]1"31o‘ + ---+(:J1°10*

1" =1+ 1nn+[:]1nn+[;]1nnu+ et 10"

n L n n L=
1 —lﬂn—1+100|I2J+[3J(10}+---+10 2]
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1I"-107=1+100x an integer
117 - 10n= 100 x an integer + 1
This show that 11"— 10» leaves a remainder 1 when divided by 100.

8.53 Finding Last Digit of a Number
Using binomial theorem, find the last two digits of the number 1172,
(11)"% =10+ 1)"

12 12 12 12
= 1012 1%+ 10111+ 101012 +. 10011+ 10%112
(o Jromse (7 v (5 Jomrna (o (]

The last two digits can be found by the last two terms, because the remaining terms
are the multiples of 100 and hence do not affect the last two digits

12 1411 l?" 12
= + 1=
[11]191 +[12}|0°1 120+ 1=121

The last two digits of 121 are 2, 1.
Hence the last two digits of 112 are 2, 1.
Divigibility Test
[T 20| Show that (15)" + (13)' is divisible by 14,
(15)13 +(1DB =14+ 1) +(4 = 1)7
= [ISC:} (14)13 + l:-lc'1 (14 12 + 1302 (14)11 o+ e BCH]
+ [P (14)2—1C (144 + PG (14)° — -+ + B 01 (14) - BC1s]
= [BC, (14)° + B¢1 (14)2 + BC2 (14) + - BCia(14) + 1
+ B0 (1Y -BC (1 + - + 0w (14 - 1]
= 14[1360 (14)1_2 o 13C1£i4)'11 + 13‘::2 (14}1D+ FR 13012
+ BG4 B¢ (14)2 + -+ B5Cu)
= 14&, where k i an integer.
Thus, 14k is divisible by 14.
Comparing Two Large Numbers
Which number is larger 512 or 492 + 507
515 = (50 + 1®

=[205](5n)“ ( 1)u+[25](50)m(1)1 ( ](53) (1) ( )(50) (l)

— (50)"* 25 (50} + 2 2'E'(su)"’ 25 il 23 2T 2 (50)7 +




R i o Tooore <67 samets G
Similarly
495 = (50— 1" = (50)° 25 (50 + 2 (50)

By subtracting, we get
51— 49% = 2[25 -(50)" + % (50)" +

[(50) 2 BADB (g5 ]}50”

= (517 - (49)® > 50 = (51)%> (49)" + 507

Hence, (5177 is preater than 4%%° + 50%°,

Emnamur Forecasting with Compound [nterest -

31| A bank offers a compound interest rate ofS%perymr Sumsira invests
Rs 100, 000for3 years. How mruch will her investment be worth at the end of 3 years?

Usingﬂm uompomdinterestfomula,ﬂ;eﬁh:revalue;&ofﬂminveﬂmﬂnt
is given by: 4= P[I-i- "'}' s

) |
Where, P = 100,000 (the principal), » = 0.05 (the interest rate), » = 1 (compounding
once per year), £ = 3 (the time in years)."
Substitute the values: A = 100000(1 + 0.05)"* = 1000(1.05)
Using the binomial expansion fm'{l 05)°:
(1+0.05° =1 + 3(0:05) + 3(0.05)” + (0.05)°
=1+0.15 + 0.0075 +0.000125
=1.157625
Now calculate the futire value: 4 = 100000 x 1.157625 = 115762.5
So, aﬂersmthemmunantmubewanhks 115762.5.

123

P EXERCISE 8.4 _d
1. Using binomial theorem find the value of the following to three places of
decimals: 5
@ V% @) (.03 (@) o @)

2. Find the remainder when 8'% is divided by 7.

Find the remainder when 2'® ig divided by 3.

4, Using the binomial theorem, find which number is larger:
(i) 19'°+20%0or210 i) 29'%+30 or31%

i




>

10.
s

12,

13.

14,

) i Bineint Toearem <ae> Leitusiims
Using the binomisl theorem, show that:

@ 57+7°is divisible by 36. (i) (ANF+(13Y is divisible by 6
(i) (21¥+(19)" is divisible by 20 (iv) (31)'+(29)® is divisible by 30
(v) (101)°+(99) is divisible by 100

Using the binomigl theorem, find the remainder when 3'" is divided by B.
Using the binomig] theorem, find the last digit of the number (32)*.

Using the binomial theorem, show that 7° — 6» leaves remainder 1 when divided
by 6 for all positive integers n.

By using Binomial Theorem show that for each ne N, 5" -1 is dﬂ?&ble by 4.
By nsing Binomial Theoram show that for each ne N, 5" -2 visible by 3.
Show that o® + (g + 2)° + (g + 4)* + 1 is divisible by 12,@1@“&” is an odd

integer. £ @
A company expects its annual revenue to grow 2l a fixed rate of 6% per year. The
revenue in year | is R = Rs. 10,000,000, Esti the company’s revenue after
4 years using the binomial theorem for sm; rates

A bank offers a compound interest “of 10% per year, Zafar invests
Rs. 2,000,000 for 4 years, How m ig invesiment be worth at the end of

4 years? %

Zaid is organizing a sports r ifion with 8 teams, Every team plays against
every other team exacly onge~How many matches will be played in total? Use
Pascal's tnangle o solve,

R
§
QY

Q\S)



Division of Polynomials

Polynomials play a fundamental role in glgebra and have wide-ranging applications
in various fields, including engineering, data science and digital communication. This
unit explores polynomial division to determine the quotient and remainder. The
remainder theorem is introduced a3 a powerful tool for evaluating polynomials
efficiently, while the factor theorem is applied to factorize cubic polynomials. These
concepts extend beyond theoretical mathematics, finding practical applications in
polynomial regression, signal processing and coding theory. By mastering these
techniques, students will develop a deeper imderstanding of polynomials and their
significance in solving real-world problems.
9.1 Polynomial Function
A polynomial in x is an expression of the form
ax +a_x ' +a " .t ax Fanta, (D
where 7 is a non-negative integer and the coefficients a,,4, .4, ;, ... @, and g are
real numbere. It can be conkidered as-a polynomial function of x, the highest power of
% in & polynomial is called the degree of the polynomial. In the expression (i) if
a, # 0 then it is a polyhiomial of degree n. The polynomials x* — 2x + 3,
3 + 2x%—5x+4 are of degree 2 and 3 respectively,
Divide the cubic polynomial 3x* —1Gx* + 13x — 6 by the linear
polynomial x — 2.'Also find quotient and remainder.
Sk 3 —4x+5
2-2) 3% 104 + 1356
W 6
—4x* + 13x
—4x’ + &
Sx—6
_Sx 10
4
Hence, we can write: 1’ — 1022+ 132 — 6= (x — 2)(3x? —4x+ 5) +4
So, quotient = 3x*— 4x + 5 and remainder =4,




<1m> mﬁmuu-
Dlvldethepolynmalx" 3 +5x%-7x+ 2 by x*—x + 1. Also find
quohentandremmnder
Solution! ¥—2x+2
Poxt+1) ¥ -3+ 58 Tx+2
e+ S
2+ 4 Tx
225" + 20 - 2x
2% —Sx+2
_Zf;iri'ﬁ

—3x

So, quotient = x* — 2r + 2 and remainder =-3x
9.1.1 Remainder Theorem
Statement: If a polynomial f(x) of degreen >1 is divided by x—a tll no x-term
exists in the remainder, then f(a)is the remainder;
Proaf: Suppose we divide the polynomial f(z)by. (x—a) . Then there exists a unique
quotient g(x) and a unique remainder R such that

J&) =@x—a)x)+R . &)
Substituting x =4 in equation (i), we-get

J(x)=(a-a)(a)+ R

fl@)=RX
Hence remainder= f(a)
BT 3 |Find the remainder without performing division when £(x) =#* +2° + 22+ 1
is divided by x+1.
Solution §:C f@=x*+2+2*+1 and x—a=x+1=>a=-1

Remainder = /(-1) (By remainder theorem)
=1+ (1P + 1P+ 1
=1+¢ED+1+1=2

Find the value of kif the polynomial x°+&x"—7x+ 6 has a remainder
—4, when divided by x+2.
Let_,"'(x)=x3+kxz—?x+6andx—a=x+2,wehave,a=—2

Remainder = f{-2) (By remainder theorem)
= (-2 +k(-2Y - T(-2)+6
=-8+4k+14+6

=4k+12
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Given that remainder = -4

45+ 12=—4
= 4k =-16
= k=-4
9.1.2 Factor Theorem

Statement: The polynomial x—ais 2 factor of the polynomial f(x)iff f(a)=0.In
other wordsx —a is a factor of f{(x)if and only if x= g i3 the root of the polynomial
equation f{x)=0.
Proof: Suppose g(x) is the quotient and R is the remainder when the polynomial f( x)
is divided by x — e, till no x-term exists in the remainder, then:

SR =G-ayqx)+R
Suppose f(a)=0 = R=0

f(x) = (x—a)g(x)

(x —a) is a factor of f{x)
Conversely, if (x — ) is a factor of f{x), then f{x) ={(x ~ a)g(x) for some polynomial g(x)
a)=0
whichprovesft'](zel::heurem.
Show that x—2 is a factorof f(x) = x’ —7x+6 without factorizing.
Here, f{x})=#—Tx+6and a=2
f(D=22<K2)+6 (By factor theorem)
=8-144+6=0

Bo, x—2is a factor of ().

To determine lfgkﬁfén lincar polynomial X—@&is a factor of £(x), we nced to check
whether f(a@)= 0. )
[ZTTT 61 %+ Land x—2 are factors of 5° + po* + gx+ 2. Find the values of p and .
'Lutf(x)=15+px=+gx+2

Note

Since, x + 1 is a factor of f(x).
8o, f(-)=0 = -1+p—g+2=0
p—q=-1 M
Similarly, x—2 is also a factor of f(x).
So, f2)=0
B+4p+2g+2=0
dp+2g=-10

prg=-5 (i)
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By adding (i) and (ii), we have
p=-2
Put  p=-2in({), we have
g=p+tl=-21+1=-1
9.1.3 Synthetic Division
There is a nice shorteut method for long division of a polynomial #x) by a
polynomial of the form x —a. Thiz process of division iz called Synthetic Division.
To divide the polynomial px’ +gx* +ex+d by x—a

P 4 ¢ d <+— firstline
@ [] [[] <«— Secondline

Y22V

‘J/ (][] [] <— thirdling?

. | /
Outine of the Method

(i) Write down the coefficients of the-dividend fix) from left to right in
decreasing order of powers of x. Insert 0 for any misging term,
(ii) To the left of the first line, write @ of the divisor (x — a).
(iii) Use the following patterns to write the second and third lines:
Vertical pattern (4)  Add terms
Diagonal pattern { A ) -Multiply by .
If (x — 2) and (5 + 2) arc factors of x%—13x2+36. Using synthetic
division, find the other two factors,
Let f(x)=x"—13x* + 36
=x*+0x* —13x* +0x+36

Hetex—a=x-2 = a=2andx—a=x+2=x-(-2) = a=-2

By ayaiihstio Division:
J et 2/1 0-130 36
z 4—13—36
i) 18
-z 0 13|L
T 0 9

. Quotient = ¥’ +0x—9= ¥*—9=(x+3)(x—3)
Therefare, other two factors are (x + 3) and (x — 3).
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P EXERCISE 9.1
. Find remainder and quotient by simplifying the following:
O G-x+2)+(x-1) (i) (& +12x"-3x+4)+ (x-2)
(i) (x*—52 -B2* +13x+12)+ (x—6) (i) (5x*—3"+2x" 1)+ (" +4)
V) (3x*—-5x+4x—6)+ (**-3x+5)
2. Use the remainder theorem to find the remaeinder when the first, l}rnomml is

divided by the second polynomial. Q)
@ F+52+6 , x—2 (ii) f+5:2+6\:.,£:.§;51
Gy &+ +x0+x+l ,x—1 (iv) I‘+rnfi=}j3}xl-l—3
v) *¥4+x742, x+2 /\‘u
: Uaeﬂlefacturﬂleoremtndetmnnelftheﬁﬁpol}mmalmnfacturufthe
second polynomial. f<\
@ x+1, £-1 </ M{ﬁ) x-2,2-55+6
(i) x+1 , 2 +x*+x-3 < (v} x=2, ¥ +x" -Tx+2

() x-3 —3x’+f .'l:--i,-,-,iN

4. Usesynﬂ:eﬂcd:vmmntq w that x is the zero of the polynomial and use the
result to factorize thqlpqhmomlal completely.

@ - ?x+6,\‘£ﬂ:2 (i) »—28x—48 x=-4
(iii) 2x"+'l;:‘)—4x’ -27x-18, x=2,x=-3
5. Use ¢ division to find the quotisst and the remainder when the

polynomml x' —10x" —2x+4 & divided by x+3.

6. Ifx+ 1 andx— 2 are factors of »° — px* | gr+2.Using synthetic division, find
the values of p and g.

7. When the polynomial 4x* + 2x° +kx” +13 is divided by x+1, the remainder is
16. Find the value of k.

8. When the polynomial x* +x”+x+ kis divided by x + 1, the reminder is 7.
Find the value of k.




9. Use factor theorem to find the values of p and ¢ if x+1 and x— 2 are the factors
of the ;}Ui'fﬂlﬂmjﬁ]f =t f‘.'ﬂj TQI':'

10. Use fector theorem to find the values of ¢ and b if-2 and 2 are the roois of the
polynomial 2° + 4x*+ax+b.

9.2 Real Life Applications of Remainder and Factor Theorems
In this article, we shall demonstrate how remainder and factor theorems are applied in
different areas such as polynomial regression (used in statistical modeling), signal
processing (used for filtering and emor detection) and coding theory (used in data
encryption and error comection in comumunication systerns), These applications
highlight the significance of polynomial analysis beyond theoretical mathematics.
Regression Analysis: It is a statistical method used to.model the relationship
between a dependent variable and one or more independent variables.

Polynomial Regression: It is a type of regressian analysis where the relationship
between the independent and dependent varisbles is modeled as an #%-degree
polynomial. It is uged when the data shows a curved (non-lineat’) relationship, but we
still want to fit a smooth, continuous fimction. Factor theorem is useful for reducing
polynomial regression degree and renmmder theorem helps in evaluating polynomials
at glven po:lms

Consider a data set of monthly sales figures. A polynomial regression
model P(x)=f+f+2x+i ig fitted to this data. If the observed sales in the 37
month are 40 units, find the percentage error.

_
'\ Error = Observed — Predicted = 40 — P(3)
Now, =¥ +3¥23)+1
=27+9+6+1
=43
Error =40—43
=3

x 100

8o, Percentage Emor= ‘%’
=7.5%
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Suppose a polynomial regression model P(x)=3x"—4x"+2x—5.If a
data point at x=—1is missing. What should be its predicted value?
By remainder theorem
P(=1)=3(=1F —4(=1)*+2(-1)-5
=-3-4-2-5
=-14
S0, the predicted value of given polynomial regression model at x =—1is —14.
Digital Signal Frocessing (DSF): It is the used in compuiers or digital devices to
analyze, change or improve signals like sound, images or sensor data. In the context
of DSP, we often deal with systems represented by transfer functions in the z-domain,
demoted as H(z). These transfer fimctions are rational functions, meaning they are
sation of two polynomials in z L, H(z)= ig;
polynomial (related to the system's zeros) and A4(z) represents the denominator
polynomial (related to the system's poles).
In zignal processing, finding the roots of the tumerator polynomial B(z) provides the
zeros of the system, If B(z) = 0, then (z — zo) is a factor of B{z). If |z.I=1, this
corresponds to a frequency that the gystem blocks.
Similarly, finding the roots of the detiominator polynomial 4(z) provides the poles of
the system. If A(ps) = 0, then(z— po) is a facior of A(z). The locations of these poles
in the complex z-plane are crucial for determining the stability of the system. For a
stable system, all poles must lic inside the unit circle (|po|<1).
A signal processing system has a transfer function with a denominator
Alz) = 22— (1,25 Use factor theorem to find the poles of the system and determine if
the system is stable.
The poles occur when A(z) =0.
7-025=0
Z—(0.57 =0
(z—-05)(z+05)=0
z—0.5=0 orz +0.5=0
z=0.5
or z=-05

,where B(z) represents the numerator




and z =—0.5. For stable system, all poles must
li¢ inside the unit circle (|zl<1), Hers, 10.5] = 0.5 <1 and |-0.5] = 0.5 < 1, Since beth
poles are inside the unit circle, the system is stable,

I’ EXERCISE 9.2 g

l. Congider a data et ai monthly sales figures, A polynomial regression model
P{x)=x"+2x"+x-3 is fitted to this data. If the observed sales in the 5%
month are 240 units, find the percentage error. \L“

2. A remiler company has developed a polynomial regression @el to predict
weekly product demand: D{w) = w® — 2w + 5w — 4, (W) represents
predicted damand(inmim)andwisih:weeknmbd& se the remainder
theorem to predict demand for 3™ week. Ifthepﬁgedemmdiszz units,
calculate the predigtion error.

3. A digital signal processing system has 8 function with a mumerator
B(z)=2"—z — 2. Use the factor theorem tgfind the zeros of the system.

' +3z+2
- i ion H(z)=———— "'~ Fi
4. A signsl process system has anuqﬁfmcnun (z) 70221009 Find the
zero(s) of the transfer fumetion 55(\ factor theorem.
; : 22 -052—05 _,
5. A gignal process systam@’&transt‘e:r function H(z)= g Find the

zero(s) of the tansfa{\%ctiun by using factor theorem.

6. A gignal p gystem has a wtansfer function with a demominator
A(z) = 2 =03z — 0.4, Use factor theorem to find the poles of the system and
determing : system is stable.

j Thﬁ‘ﬂ%&ninﬂmrnfaignalmﬂingsystem'smferfuncﬁnnequalm
A(z) = 22 + 12z +0.35 Use factor theorem to determine the location of the
corresponding poles and asgess the stability of the system,



W Trigonometric Identities

IN TRODU(,TION

In ﬂus unit, we shall firat establish the fundamental law of trigonometry before
discussing the Trigonometric Identitles. For this we should know the formmla to find
the distance between two points in a plane.

10.1 Distance Formula: (Recall) |
LetP(x,,y,) and O(x,,y,)be two points. If “d ™ denotes the distance between them,
then d=|PQ|=f(x—xl+(1—)"

or = ee—xF+0-n)
Find distance between the followiag points:
M 438 , B(E6) N
(i) Pleosx,cosy), Qs x, sin y)
Solution ~
(i) Distance = | AB|=4/(3-5)°4(8—6)° =V4+4 =22

(i) Distance = |PQ| = (cos x—sin x)’ + (cos y—sin y)?

= -'{fbﬂé’x+ sin” x—2cos x sin ¥ +cos” y+ sin’ y—2cos y siny

+ ‘/Z—stx sinx— 2cosy sin y

= /2—2(cosx sinx+ cosy siny)
10.1.1 Fundasmental Law of Trizonometry
Let o and /4 be any two angles (real numbers), then
cos{z — ) =cosa cos f +sina sin

which is called the Fundamental Law of Trigonometry.




Proof:  For our convenience, let us assume that o> 5> 0.
Congider a umit circle with centre at
origin O.
Let termingl sides of angles a and # cut
the unit circle at 4 and B respectively.
Evidently mZAO0B=a - £
Take a point C on the unit circle such that
m/XOC=m/AOB = a—§.
Join 4,B and C.D.
Now angles @, § and @ — # are 1n standard position.
The coordinates of A are (cos o, sin a),
The coordinates of B are {cos £, sin §)
The coordinates of C are (cos &~ 4 , ginz—§ )
and the coordinates of L2 are (1, 0).

Now AAOB and ACOD are congruent. & [(SAS) theorem]
T, [A=[B] = [~ D
Using the distance formmla, we have:

(cos @ — cos B + (sin a— sin B)? = [(cos{a—F)—1F + [sin (a—F) — 02
= co® @a+cos® # — 2 cos @eos f+sin® o+ sin? f 2sin asin B
_ = cos*{a —f) + 1 — 2 cos(a — ) + sin’(z — F)
=  2-2(cos a cor -+ sin @ sin §) =2 - 2 cos{a —f)
Hence ' cos (@ —5)= cosacos f+sinasin F.
173 Although we have proved this law for @> 5> 0, it is tra for all valuss of @ snd 5. )
Buppose we know the valnes of gin and cos of two angles « and §, we can find
cos(ex — f) using this law as explained in the following example:

Find the valne of sin 2.

As % =75°=45°+30° = §+£

6
. &= g FE K . I ks T .7
gin — =gin|—+— | =sin—cos—+cos—sin—
12 [4 6) 4 6 4 6
1 3 1 1 B+
=—.—+—.—= G
2 2 22 22
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10.1.2 Deductions from Fundamental Law
1. Weknow that:

cos{a — ) = cos @ cos f+ sin ¢ sin §

Putting a=%init,w:g=t

cos[%—ﬁ]= ms%cnsﬂ+singsinﬁ
. - L]
= cns(%—ﬂ)=0.cm-ﬁ+l.sinﬁ ( coé—g;ﬂ,ﬁn%ﬂ ’

mg—ﬂ]ﬂhﬂ (i)
2. Weknow that:
cos (- f) =cos a cos #+ sin‘eesin £

Putﬁngﬁ=—%init,weget

ofe (5] e Jomnn()

f JrJ .
5111|—E =—gin—=—1

= ms(a+£]=--msa.ﬂ+sincx(—l) ¥ 2
2, 1 T
: ms[——)=ms—=0
2 2
e .
SQKE+¢)=—51.I1E (ii)
3. Weknow that:
cos (g -,s] —sin [6) above]

Putﬁngﬂ=%+a in it, we get

[5-(are)=(5+9




4. Weknow that:
cos{a— ) = cos arcos f+sin @sin f
Replacing £ by —f we get

cos[a—(—f)] = cos a cos (—F) + gin & sin (— 5)
[ cos(—3) ="coaf, sin(—f) =—sing]
= cos{er+ ) = cosa cosfl —sine sin 8 (iv)

5. Welknow that:
cos{a + ) = cos & cos f - sin & sin §

Replacing a by §+a.w=get

o1} sl

= ms[%+(tz+ﬂ_)] =— gin o cos f—cos a sin §

= ~sinf{zx+ ) = —{[sin  cos § + cos a sin ]
sin{a + #) =sine cos B +cose sin g )
6. We know that:
sin{e + f) = sin @ cos F+cos @ sin § [from (v) above]

Replacing £ by — §, we get

wio-p e p-memen (¢ BHE

sin(@ — f)=sina cos —cose sinf (vi)




7.

We know that:

cos(e—f)=cosxcos f+sina- sin £

Leta=2xand f=86

8.

10.

cos(2x— @) =cos 2x. cos B+ gin 2w gin @

1008 +0-sin @ {ﬁ%:::,
= cos £ (vii)
We know that:
sin{fx— f) =sin@- cos f—cogs - sin f
sin{2z— @) =gin 24 008 §—cos 2wsin §
=0.cos @~ 1.5in @ {ﬁ‘“j’;g:f
——sin @ (wiiD)
_ sinf@+f) _ sing cos f+cosa sin
R L e p— 7 "y
ging cosfd | 0@ sin 4 Dividing
_ cosa cosf " -cosa cosff numerator and
cosa coff  mina minf denominator by
cos eof fi  cosx cosf coscx cosf
W 1-tana tanf
e _ sin(@-g) _ sina cosf—cose sing
tan(a:~5) cos(@—f) cosx cosf+sina sinf
sing cosf_ cosa sinf Dividing
_ cosa cosf cosa cosf nmumerator and
COB X cosﬂ+ sina sing denominator by
cosz cosfi cosa cosf cose cosf
lnn(a—ﬂ]:M ®)

1+tma tanf




10.2 Tngunometrlc Ratios of Allied Angles
Two angles o and § are said to be allied, ifa £+ §=n(90"), ne z
For example, + a, 90° +a, 180° + ¢, 270° + a and 360° + & are some allied angles of a.

Using fundaments] law of trigonometry, cos{o— ) =cos a@cos §+&in @ sin § and its
deductions, we derive the following identities:

ﬁn(i-a]:ma, ms(f—ﬂ)=sin 8, m(i-a]=mta

2 2 2

sin(£+ﬂ)=m59 ms(£+ﬂ) —g§in @, tan[ +9]=—cot9'
2 < 2 2 '

sin(z@)=sin & , coslr—G)=—cos 8, tan(x —G) = far'P
gin (% +8)=—sin &, cos(x+&)=—cos &, tan{z +&)=tan &

sin(ﬂ- ):-mse,m(ﬁ- ]:-sine,fm[ﬁ- J:me
2 2 i i)

m‘n(?'?”w} G, m(%+ﬂ].=.sin o, un[%w] —

sin (2% —#) =—sin @ , cos(2r —B)=cos &, tan(2r —8) =—tan @
sin(2x+8)=sin § , cos(2x+@)=cos &, tan(2w +8) = tan &

The above results also 1o the reciprocals of sine, cosine and tangent. These results
are to be applied in the sidy of trigonometry and they can be remembered
byumgﬂwﬁallwmgdume

1. If & is added to or subtracted from odd mmiltiple of right sngle, the
trigonomﬂ'iﬂmtioschmgeinlaom—nﬂm and vice versa.
ie., \gn Z—= cos, tan 2 cot, sec z—* cosec

c.g. sm[E— ]=cu59 and ms[g?’r+9]=sinﬂ

2. I.fﬂis,addedtoorsubtractedﬁ'omanevenmulﬁpleof%,ﬂ:et'igunometﬁc

ratios shall remain the same.

3. So far as the sign of the results is concemned, it is determined by the quadrant
in which the terminal arm of the angle lies.
eg sin(r— H=sin g, tan(x+@F)=tme, cos(2x— )=




+
Eim +va Al e
x X
iz
x+0 or;—ﬁ' m tam +ve COB +vE
--yr
%w -0 | ¥

(a) Insin[%— ],sin[%+9], i (—— ] mn(h+9]
mulhphesof 7 are involved.

Tlmrefore, sin will change into cos.
Moreover, the angle of measure

(i [%—H]ﬂlhavetﬁihiﬁalsideinQuad.L
D& A1 )

S0, gin [E_ ]—cosﬂ,

i) (%+'3Jwillhawterm:inalsideh()uad.ﬂ,
So, gin (%+6']= cos &;

(i) (—— ]wﬂlhavewrminalsideinQund.I[[,
So, sin (3%— ]Z—ms g;

(iv) ( )mﬂhavemnnmalmdeinQuad v,

So, sin [%r+9)=— cos 6.




() In cos(m — @), coslx + §), cosr— §) and cos(2x + ), even
multiples of %m involved.

Therefore, cos will remain as cos.
Mareover, the angle of measure
() (x— 8) will have terminal side in Quad. IL, therefore
cot(z—0) =—cos 8;
(i) (=+ &) will have termingl side in Quad. ITT, so
cos(z+&H=—cos &
(iii) (2w— &) will have terminal side in Quad. TV, so
cos(2x— 8) =cos #;
(iv) (2« + #) will have terminal side inQuad. I, so
cos(2r+ §) =cos 6.
Without vsing the tables, write down the vahues of:
(i) sin225° (i) tan 600° () cot(-225°) (iv) cosec(—420°)
1

ENTTIE () sin 225° = sin (180 +-35)° = —sin 45° = -

(i) tanﬁDﬂ“=tan(54ﬂ+60.j°=mn(6x90+60)°=m60°=1.5
(iii) cot(—225°)— —cut;ﬁ_'z:’:.i"’ =—cot{180 +45)° = —cot(2 x 90 + 45)° = —{cot 45°) =1
(iv)  cosec(—4207)=—cosec 420° = —cosec(360 + 60)° =—cosec(4 x 90+ 60)°

=—gosec 60° = =4

3

... ain(180°—8) cos(360°—8) tan(50°+-§)
L0 d] Sinplily: 2 00— 8) cos(180° +8) a2 70" ~5)

sin(1B0° —#) =ainf , cos(360°—8)=cosd
rl0 o Becanse < tan(90° +8) =-cot@, sin(S0°-&) =cosd
cos(180° +6) =—cosd , tan(270° -&) = cotd
sinf- cosd- (—cotd) _ -ging _
cos & (—cosd) cotf  —cos®

Therefore, tan &




23
H

¥ EXERCISE 10.1 _d

Without using the tables, find the values of:

() cos(—1230°) (i) tan (— 1035°) (iii) sec(1140°)

(iv) cosec{— 690%) (v) cot{1320°) (vi) cos (- 240°)
Express each of the following as a trigonometric fimection of an angle of positive
degree measure of less than 457,

@ cos168° () sin192° (i) cos 333°
(v} tan213° (v) cos(-435°) (v) sin219°
(vil) tan (— 597°) (viii) cos (~111°) (ix)- 5in (~390°)
Prove the following: LN
() sin(180° + @) sin(90° - @) =—sina cos@ .

1

(i) sin810° sin 630° + cos 135° mn225°—l—-i-

(ili) tan 150° cot 330° — 2sec 135° coses 225° = -3

(iv) sin210° +m5240°+tm225"‘ +wt225“ =1

Prove that: ;

O tan(180° +a) cot{90° o )
SIn(360° —r) cos(2T04a)

sin (:r+e:;tm(3?”+aJ

=cos

(i)

cot? {%—6] cos’(x— ) cosec(2r @)

iy 00800 +6) sec(6) 18P —6) __
560(360° —8) sin(180° +8) cot(90°—8)

Show that: s&(%—&)m[?—ﬂj (3%:- ] (;+3J =-1

If a, §, y are the angles of a tiangle ABC, then prove that

@) sin(a+f)-siny @ soo(“12 )- e

(i) coseca= (iv) tan(a+8)+tan y=0,

S
sin( 8 +7)




10.3 Further Applications of anu;: Identities
[EIUT05|  Prove that: sin(a+8) sinfa—f) = sin’ o—sin’ 8 @
28 costa (ii)
LH.S. =sin (a + B) sin(z - 5)
= (sin & cos 1 cos a sin B) (8in @ cos - cos a rin f)
= sin® o cos® B— cos® @ sin? §
= sin? a(1 — ain? f) — (1 — sin? @) sin® £
= gin? @ — gin? @ sin® f— gin® B+ sin® g §in® §
— sin? @ — sin? B )
= (1 - cog® @) — (1 — cos® f)
=1—cus?a—1+ma=ﬁ
‘B—cos’ @ (ii)
Wlﬂluutusmg tables, find the values of all trigonometric fimctions of 105°
ERTTTT, As 105° = 60° +45°
sin 105° = gin (60° +45°) = smﬁO"ces45“+msGﬂ“m4S°

et

cos 105° =cos (60° + 45°) = cos 60° cos 45° — sin 60° sin 45°

nGignE

tan 105° =ti]n(60ﬁ+45u) = tan 60° + tan 45°
1 tan 60° tan45°
= i+l _1+J§
1-43:1 1-43
cotloge = 1 _1-43
wnl05 1++3
COSEC 105“ = — 1 = 2&
sinl05®  f3+1
and soc 105° = 1 _22

cos 105° 1- 3




Enmplg Prove that cos 11 +s.m11 = tan 56°

cos 11°—gin 117
(XTI, Consider
RHS= msﬁ":m(,q,sb_l_lln): tan45° +tanll
1-tan45°tan11°
| 01T
_lrtanll® +msll° _ eo8ll®+sinll®
l—tﬂﬂlln 1_ Ei.[l]l" cm]'lo_sinllo
cosll®

=LHS

cog 11°4+8in 11°
Henge = tan 56°
cog 11° —sin 11°

]fmsa=—% t.mﬁ—— the terminal side of the angle of measure o
ishtheﬂqmd:antandthatofﬂisinﬂm]]lquadrant,ﬁndthevaluesuf.

@  sin{a+p) (W) eos (z +5)
In which quadrant does the terminal “side of the mgle of measure
(a+ B) lie? :
STt o, We know that sin® @ + cos® @ =1

z
Therefore, sine i-Jl a:=:|:1’l —— 5?

As the terminal side of the mglenfmeasmeofammﬂ:e[[quadrant,whﬂemals
positive.

: 24
S‘D. sula- s
. 25

2
Now . seefl == 1/i+tﬂnzﬁ =it 1+(%J =:I:15—3
Agy the terminal side of the angle of measure of F1n the quadrant ITL, 8o sec F1s negative

sec S ——E and msﬁ——i

'fi ’ 1
smﬂ-:l: 1 ﬁ 11— —E J;

Asﬁemrminﬂnmufthemgleofmamreﬁmmﬂlemquadmm,snnmﬁiﬂnegaﬁve

gin A __E




sin(a+ﬂ) =sina cos f+cosa sin

- (EJ[_E)J,[_I'[ 12]= -120+84 __ 36
25)\ 13 25)\ 13 325 325

and cos(a+f) =cos acosf— sinasinf

_{ 7Y 5) (24\( 12)_35+288_ 323
[ 25)[‘13)“[25,[ 13] 325 325
Ag, sin{a+ F)is—ve and cos(ex+ f)is +ve
Thuys, the terminal amm of the angle of measure (@ + £#) is in the quadrant IV,
(BTN e|  Ifa, 8, yare the angles of A ABC, prove that:
(i) tanettanf+tany =tane tanf tan y
. a B B . ¥ A
('.Ll) ME tanEHmlE I:m5+tm1£ ME—I
M e, B, v arc the angles of A ABC, therefore
a+f+y =180
atfl =180F—y
(i) tan(z+A)=tan(180° -3
tang +tanf
1—-tane tanf
tan &+ tan § =—tan y+-tan o tan 8 tan
tan g +tan f+tan y =tana tan B tan y

() As a+f+y=180- = Z+B.7 _op
2 2 2
a f '
_.|__=_=90°__
80 2_ i) D)
G fenfe)
2 2 2
& B
tani+tmi=mt£ :
Lt %l 2 @’
z 2 2
w6 il @l -1-n® wn’.
2 2 2 2 2 3
wn? wn? +1en? wn? +en? a0 =1
2 2 2 2 2 2




Enmple 0| Express 3 sin §+4 cos @ in the form » sin(§+ ), where the terminal side
of the angle of measure ¢ is in quadrant 1.
Let 3 =rcos¢ (i)
and 4=rsin ¢ (ii)

Squaring then adding (1) and (ii)

32+ 42 =72 cog? g+ P sin? ¢
Dividing (i1} by (i)

9+16 = r*(cos’d +5in% ) ;=ﬂ
25— p? : roos ¢
5=r : §=tﬂ'1¢
r=35 4
Lm”:g.

3sinf+4cosf = rcosgsin H+rsi;_r_1._ﬁm9
= r(sin & cos ¢+ cos Psin )
= rsin (F+4.

Uil

where r=35 and tan-‘.ﬁ-—

v EXERCISE 102 J

1. Without using table fitd’the vahues of the following; Hint
() sinl15° (ii) cos 15° (iii) ten 15° 15 = (45° - 3(F) and
(iv) sin 105° (v) cos 105° (vi) tan 1050 W05 =(60° +45)

2, Prove that( . (i) sin4s*+a)= J_ (sin & + cos @)

(ii) cos{a+45°)= E(ﬂﬂs & — sin a)

3

Prove that: (i) tan(45°+4)tan (45° - 4)=1

R e

ginf—cos @ tang P

i) T ol g Eafund  cosO+6)




10.

11.

12.

Shwt'nai: cos{a + £) cos(a— §) =.m1 a—sin® B=cos’ f—sin’ a
Show that: sin(a + #)+ sinf{a - &) o hila
cos{ex + f)+ cos(a — )

Show that: (i) sin*(a + %) —sin*(a —%] = gin 2q.sin §

(ii) sin’ & +sin® B + cos’ (& + B) + 2sina.sin F.cosfx + ) =1

Show that:
. oy l+tana tang wtartanﬂ
) cos{a—p) = (ii) sm(a+ﬂ) wgw
_ oot cotf +1 : tana+tmﬁ _sin(@+ f)
(i) cot(a—A) = ~ g cota ©) e g sin(a—B)
0 - 2
If s;iul:':=g and cos f= ﬂ.,w.r];u':r_{-'..‘)“;tz'f-?E and 0<f8< -
25 2" </, 2 2
Show that Biﬂ{ﬂ—ﬂ)=%, e
If sin cx——i and m,ﬂ= —E where . <g<lx mdx{ﬁ<3—g Find
17 3 2 2
@ sin(zt+p) ..-fll) cos (z + ) (i) tan (z+f)
(v} sin(e-p)\ 0 (v) cos(a-f) (v) tan (@- fB).

lnmrhichqga@imnﬁdoﬂmtwmjmlsidusofma angles of measures (@ + f) and
(a-p) lig\.
Find sin. (uf+ ﬂ'} and cos (:r-'- A), given that

43 tana—% cos f= —3 and neither the terminal side of the angle of measnre
 nor that of 8 is in the quadrant I,

@) tan @—- % and sin = — % and neither the terminal side of the angle

of measure o nor thet of § is in the quadirant IV.
¢0s 19° +-gin 19°
Prove that: = tan 64°.
Ve o8 19°—sin 19°

Prove that: cos(60° + &) cos{(60° — &) + sin{60° + &) sin(60° — &) = cos 26




Mameaates (0

cotT oot =k ekl ol
2 2 2 277z T2

14, If @+ 8 +y=180°, show that: cota cotf+cot S coty+coty cota=1

15. Express the following in the form rsin(@+ ¢)or rsin(@—¢) where torminal
gides of the angles of measures 8 and ¢ are in the first quadrant:
(i) 24sinf+7cosd (i) 12sinf-5cosd (iii) sin &#—cos &
(iv) 8sin® —6cosd (v) %sin9+§em6 (vi) 13sin 68— Bdcos 6

10.4 Double Angle Identities
We have discussed the following resulis:
sin (z + ff)=#in & cos f+ cos a sin #

_ ; . . oo Ena+teng
cos(@+4) =cosex cosf—sing sinf and tan(o-+5) I—tang tand
We can use them io obtain the double angle 1dmt1hﬂs as follows:
(i) Pat S =cinsin{at+f) =sinacosftcosasing
gin (& + @) = sin @ cos @+ cos a sinE
Hence sin2a=2sing cosa
(ii) Put J=eincos{a+f)=cosa cos f—sina sin g
cos{a+ @) = cosa cos - giNw sine
Hence cos2 o =cos® a—sin*a
cos 2 & = cog’ @ —sin® @
cog2 @ = costa=/(1— cos &) (v sin® a=1-cof )

= cosa— 1 +oos’ &
cos2 ¢ =2¢cos’ a—1
cos2 o= cos’ a—sin’ o
cos 2 a = (1—sin? a)—sin a (-~ cos’a@=1-gin? &)
cos2a=1-2sina

(i) Put ﬁ=ainmn(a+ﬁ)=%
tan e + tanex
+ e T Ty AV Rl Py B
tan(a+a) 1-tane tanc
220G

1-tan*ex
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The formulas proved above can also be written in the form of half angle identities, in
the following way:

(i) cosa=2cof? T -1 =>cmzﬁ=m cox g S JLEC0E
2 2 2 2 2
@ cose=1-2am % = apE170%C _ g & [l-oosa
2 2 2 2 2
sing 1-cosa
Gi) anF=_ 23V 2 = fl-cﬂ
Z a2 1+cosa 2 1+ cosax
2 2 )
10.6 Triple Angle Identities
(i) sin3g=3sng-4sir’a (ii) cosda=4dcos’ a—3cosa
Itan z — tan’
tan 3=
@) tm3a= = e

Proof: (i) sin3a =sin(2ata)
=gin 2a cos ¢ +'cos 2 sin &
=2 gim a cos @cos a+ (1 —2 sin’ @) sin &
=2 sin @008’ @ +sin @ — 2 sin’ @
=2 sis a1 — sin? @) +sin. & — 2 sin® &
=24ma—2s5n° ¢+sna— 280
gin 3@ =3 gin @ —4 sin’ @
(i) cosdgr = =cos(2a+a)
= ¢08 2 coB @ — sin 2 sin o
=(2cosf@—1)cosr—2sin@cos rsin @
=2cos’ a—cos - 2sin ecos @
=2co8’ @a—cos —2(1 —cos @) cos @
—2co8’ad—cosr—2cos@+2cof @
cos3a =4cos’ a—3cos e
({iii) tan3e =tan 2z +a)
_ tan 2o+ fana
 1-tan 2 tana




1-tan’ @ ¢ _ 2tna +tane—tan’ z
= z 2
- 21311:’: tang 1—taR a-2tan‘e
1-tan"cx
. Itana —tan’c
1-3tan’ o
sing + sin 29 — tanf)
1+cosé +cos P
sind+2sinfcosd  sn&{l+2cosd)

tan’ @

il 11| Prove that:

Solnto LHS. = =
- 1+cosd+2cos*@—1 cosd(l+2c08d)
=ﬁ=1mlﬂ=R.H.S.
cosf
Hence i i =tan A.
1-+cos 8+cos 26
e 2teand .. 1—tan* @
({1 1112| Show that: 20 = —%—5— 28 =
ampele (@ sin 1+tan’ @ W) eos 1+tan’@
. o~ x \ 2sin& cosf  2siné cosf
(i) sin28 =2sin @ cos @ = : = oG sin’8
258 cosd 2sillﬂ
__ cos'®  _ cosé
cos’ G +sin’d  cos’d sin’d
cos” § cos’d cos’d
2tanéd
n2f=—-—
e T lranie
G kol e i g SOCNLY s Bain g
1 " cos’ @ +5in’d
cos*f—sin’d cos’d sin’d
_ cos’ =mﬂzﬂ cos® @
cos® @ +sin’d cua‘ﬂ_'_sin’ﬂ
cos’ @ cos’d cos®@
_1-tan’8

26 =2 E
e 1+tan @
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(ATTE01913| Reduce cos® @ to an expression involving only function of multiples of
8, raised to the first power.

We know that:

2co8° 8 = 1+cos28 = cos’8= Lieontd

2

cos* 8 = (cos” 8)* = [—“mm]ﬂ

2

_ 1+ 200828+ cos*28
4

[142 cos 28+ cos? 28]

o | = -h-I'—

[1+2ms29 1+ms4&]

=4 5 2+4cos29+1+cas49]

%[3+4ms29+m49]

P EXERCISE 10.3 _d

1. Find the values of sin 2 ¢or 2 and la:ﬂ 2a, when:

(i) sina=%_ (i) cﬂsa— whmﬂ{a{%
2. Prove the following identities:
i) cote—tana=2 cot2 i) ————=tan
(i) cot a cot 2ex (ii) Ep— 74
i) =252 _ g% (i) 2T _ se02 - tan2a
SINgE 2 cos@ +8ing
sinZ + cos =
) :+s1lna= i : (vi) msecﬂ+2;osec23=mt%
—gine sin——msi sec
(vil) 1+ tan & tan 2 = see 2 (vityy 2ABB a2 00 tnp

cosd +cos3d




gin3f cos3p coglf sin3if

' s =2 + —4c0s26
B enl  0sd W “wa amg e
6. .0
tan 2 + cot 2 -
(xi) H:s&:ﬂ iy SO, N3 g
cot 2 = fan™ cosd ging
3 iy
3+cosdd 1 % 2 . o 14-8in 26 2 ¥
3400880 _ 1 (1un? 9 +o0t’g —tan®( % 4.9
Gl edg T o) Gl o (4+)

(xv) cns2£+ms’3x+ms 2 5% % | cos? 1E (L
8 2 2 &

Show that: 2c08 @ =+/2+ 2+ 2c0s48

Reduce sin® @ to an expression involving only ﬁmu:iuh of multiples of &, raised
to the first power.
Find the values of sin # and eos § without using tabte or calgulator, when £ is:

=2

(i) 18 (ﬁ) s (ﬁi} T (i\"} 790
Henoe prove that: cos 36° cos 72° 005,108%cos 144° = E
Hint [7 S ESTS N Let 8 =3¢
50 =90° % 56 = 130°
gor2y =5 () 30+20 = 180°
30 =9F zai\ 36 =180°-24
8in 36 = sin(}F = 26) ot sin 36 =sin(180° — 28) ete,

10.7 Express the Product (of sines and cosines) as Sums or

Differences (of sines and cosines)

We know that:
mn(a+ﬂ) = gin @ cos # + cos @ sin g @)
gin (z— f8) =sinacos § — cos asin f (ii)
cos{a+8) =cosacosf —sinasinf (iii)
cos (@— ) =cos @cog§ +sin asin f (iv)
Adding (i) and (ii) we get
sin{er + f) + sin{fe — f)=2 sim @ cos § (V)
Subtracting (ii) from (i) we get
sin{er + f) — sin{fe— F)=2 cos a sin § {vi)
Adding (iii) and (iv) we get

cos{a+ ) +cos (g—f)=2 cos g cos (vii)




Sublmchng (iv) from (iii), we get
cos{a+f8)—cos(a— ) =— 2 gin e gin 4 {viii)

So, we get four identities as:

2sin acos § = sinfg+ ) +sin{a-f)

2 cos asinf = sinfa + ) — sin{fa— A

2cosacosf = cos(a + /) +cos(e— )

—2sinasing = cosfa + £) —cos(a—5)
Now putting & + =P and & — 5= 0, we get

a=P+Q and f _P-0
2 2
P+Q P-0
sin P+ gin @ = 2zin 3 > A

PiQ . P-g\_ p
Pigr/\r‘ o

cosP+eos(Q = 2c08——co8

cosP— le——Z Q&S 2

Examplefl] Expm552m?ﬂcm3ﬂasamurd1ﬂ'emnce.
EXITTTN, 2 sin 76 cos 36 =8in(78 + 36) + sin(76 - 36)
~ o=&in 108+ sin 46
(BT 915| Prove without using table / calculator, that
sin 199 cos 11°+sin 71° sin 11° = -
EIITTTA, LH.S =sin 19° cos 11° + sin 71° sin 11°

=%[23in19° cos11°+2 sin 71° sin 11°]

Ir . — § 6446 °o_110
=E|:{sm(19°+ll )+8in(19° - 11° ) —{ cos(71°+11°)—cos(71°-11 )}]

=%[ 3(° +sin 8 —cos 82°+cos 60°]

=%E+sins=-ms(w-sﬂ)+%]




Hence, sin1%° cos 11° 4+ sin71° sin11°=%

| BTN 16| Express gin 5x + sin 7x as a product.

gin Sx + sin Tx = ZsinSI;?xmsx;?x — 2sinBrbos(—)
=2 gin 6x cosx (' cos(— @)=cos &)

Expresz cos 81 cos 38+ cos 58 + cos 78 as a product.
cos 8+ cos 36+ cos 58 +cos 78
=(cos 36+ cos @) + (cos 76+ cos’58)
= 2m33+9m35—3+2m:19"+*59 m?ﬂ—Sﬂ
2 2 ¢ 2 2
=2 cos 20 cos 0+ 2 cos 6 cosf
=2 cos & (cos 66+ cos 28)
60+280 668-20
3 O ]
=2 cosf (2 cos 48 cos 28) =4 cos & cos 28 cos 46
Show that cos 20° 008 40 cos 80P = -

8
LH.5=cos 20° cos40° cos B(P
1

= 2@036[2005

{4 cos 20° cor 40° coa 80F)

[(2 cos 40° cos 20F) . 2 cos 80°]

[{cos 60° + cos 20P) . 2 cos 80°]

(1) ]

| et P | e |




{coz B(° + 2 cos B(® cos 2(F)

{cos B)® + cos 1({P + cos 60°)

[cos BO® + cos(180° — BO) + cos 60°]

1
4
1
a4
1
4
1
4

[mﬁ 80“—ms80‘+%] [ cos{180° —8)=—cosd ]

[1]=1 - RIS

pa—

4,2) 8

Hence, cos 20° cnsdﬂ"msﬂﬂ"=%

P’ _EXERCISE 104 4

Express the following products as sums pf differcnces:

() 2sin3P cos (iD) -2 cos 5@ sin 36

(iii) sin 58 cos 28 {iv) 2sin 78 sin 26

(v) coslx+y)sin{x—y) 0 (v1) cos(2x+ 30P) cos(Zx — 307)

(vii) sin 12° gin 46° : (viii) sin(x + 45°) sin(x — 45°)

Express the following snms or differences as produets:

(i) sin58+sn36 (ii) sin 8#—&in 48

(iii} cos 68+ cos30 (iv) cos378—cos &

) ms_,__lZ‘-'. + cos 48° (vi) sin (x+ 30°)+ sin(x — 30°)

Provehe following identities:

) #in3x—8imn x — cot 2x (i) sin8x+gin2x — tan5x
COEX—COB3X cosdx+cos2x

(i) sinA—s?nB=mA—B cm;A"'B (iv) gin 80° +sin 40° -5
sinA+gsin B 2 2 cos B0° +cos 40°

Prove that:

() cos15°+cos 105° + cos 195° +cos 160° +co3 2857 =0
) s8in 2¢ + &in 44 + 5in 67 + s &7 - tan 59
co8 26 + cos 48 + cos 68 + cos 88




10.

nnm

) sin(z—a] - [ 4+a] Lcos2s

W) ginf +8m 38 +sin 57 4+ 8in 78 — tgn 40

cosf +cos 30 +cos 58 +cos 70

Prove that:
(D) cos20° cos 40° cos 60° cos 80° = % .‘ -\:_'-2. _
(i) uin% sin2F sin® sin ¥ - 3 P

9 3 9 1§
(iii) sin10° sin30° sinS0° sin'?ﬂ“z%
Prove that: — "2 _ —ging: deduoe the yeNROF sin 15°
1+2cos 28
Prove that: fan75°—tan15° =23  \

Prove that: cnslS“—sin15°=L <Y

Prove that: — sin’a—s%zﬁ~- =tan{a +§ )
mama-_gm*ﬂmsﬂ
Prove that: D
@+ B+y\ . (r+e
siner + smﬁ+s‘inf sm{a:+,3+;r] 451:{ 3 J ( 5 Jsm[ 3 J



Trigonometric Functions
and their Graphs

IN TRODUCTION

In this unit, students will explore key concepts essential for understanding the role of
irigonomeiry in mathemstics and itz real-life applications. We will begin by leaming
how to determine the domain and range of trigonemetric functions to understand their
behavior. Next, we will discuss even and odd functions, slong with their periodicity,
which explains their repeating pafterns.
Students will then learn how to graph and analyze sine, cosine, and tangent fumctions,
following this, we will focus on calculating the mzxdimum and minimum vahies of
minusoidal functions and examining their unique properties such &s amplitude,
frequency, and phase shifts,
Finally, students will apply these trigonometric concepts to solve practical problems in
navigation, engineering, and physics, including caloulating distances, optimizing solar
panel angles, and analyzing forces in structures. Mastering these concepis will enable
students to solve both theoretical and real-world problems using triponometry.
Let us first find domains and ranges of trigonometric functions before drawing their
graphs.
11.1 Domains and Ranges of Sine and Cosine Functions
We have already defined irigonometric functions sin , 4
coe 8, tan &, csc 6, sec @ and cot 8. We know that if
P(x, ¥) 1s any point on unit circle with centre at the
origin O such that m/XOF = @ in standard position,
then x
cos@=x and sinf =y

=> for any real number @ there is ong and only one

value of each x and y i.e., of each cos & and sin 8.
Hence sin # and cos & are the functions of # and their
domain is R, the set of real numbers.
Since P(x, y) is a point on the unit circle with centre at the origin O, therefore

—1<x<1 and -1<y<1
= -1<cowf<1 and -]l <sm@ <1

Thus, the range of sine and cosine functions is [-1, 1].
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11.1.1 Domsins and Ranges of Tangent and Cotangent Functions
From the Figure 11.1.

@ twnd=72 120
& —
= terminal side OP should not coincide with OF or O (the Y-axis)
i Sz

= G2+Z 2% %
2’727 2

= 8= (2n+l)%,wherenez

Domain of tangent function— & — {x | x= (21 -+ 1) %,n,;&,Z}

2 2x £
function = R = set of real numbers.

(ii) From Figure 11.1
=3
cot 8= 3 =0

terminal side 51'; should not comcide with OX or OX? (the X-axis)

=
= 6+ 0,txt2n..
= 0 nn,wherene Z
Domain of cotangent function =R — {x|x=n#z ne Z}
Ifx= ;a ﬂ—iyasy—rﬂ ly—r:l:mthereforcrmgeofmtangent

function = & = set of real numbers.
11.1.2 Domain and Range of Secant Function
From the Figure 11,1
secﬂ—l,xa&ﬂ
X
—n
=  terminal side OP should not coincide with OY or O¥” (the ¥-axis)
3 3.1: S5x
s e
2’ 2 2

= 0= (2n+l)%,wherenez

= 8%+

Domain of secant function=/1 — {x|x=2n +1) %,ne Z}




As 0=x<1 s0, %El,secﬂzl and -1<x<0 so, %5—1,5&065—1
As sec @ attains all real values except those between —1 and |
Range of secant function=R — {x| -1 <x<1}
11,1.3 Domain and Range of Cosecant Function
From the Figure 11.1

1
f=—, y#0
C2C 3y y

U

terminal sideal;should not coincide with QX or OX” (the X—axis)
8% 0,txt2n... '
0 # nn, wherene 2
Domain of cosecant function=R — {x |x =nn, e Z}
As csc Fattains all values except those between —1 and 1
Range of cosecant function =R—'{.x[—l <x<1}
The following table summarizes the domaing and ranges of the trigonometric functions:

§ 4y

y=sinx (—oo, e0)=R [-1.1]

y=coax (~o0, ) =& [-1,1]

VIR | R o), 5 @n)Z ne 2 ()= 8
y=ots R= (-, ), x2nm,ne Z {00, @)= R
y=“c'f ) [—m,m),x#(h+l)%,nez oo, —1] W1, )
y=cosecx | (—w0,00),x+nx, ne Z (~o0, —1] W [1, @)

11.2 Even and Odd Functions

A fimction f is said to be even if f(—x)=f(x), forevery @ L
tumbet x in the domain of £

For example: 7(x) = x*is even function of x. Here
FEX) =% =x"= f(%)
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A function f is said to be odd if f(—x)=—F(%), for every number x in the domain of f .

For example: f{x) = x’ ia an odd funetion of z. Remember!

Here f(=x)=(-2)=—% =—f(3) The graph of odd function is
The function f(F)=cosf for all #e R iz an even ﬁmﬂbﬂﬂﬁ:
function (see figure 11.2).

Here f(—8)=cos{-6) =coad = f(@). *0,1)

Thus, f(#)=cosd is an even function :(x.x},%{wsa,ainﬂ)
Similarly, the function f(F)=sind for all -1,0) ]_i (1, 0)
N

&€ R is an odd function. _' g
Here f(—#)=sin{—F)=—sainf=— (7). K .

Thus, f{#)=sin# is an odd function.

(x5, —¥) = (c08 B, —in 6)

B.-1) Figure 11.2

Tn both the cases; for each x in t]:u:J
domain of f, — tust alse be in the domain of 1
11.3 Period of Trigonometri¢ Functions
All the six trigonometric functions repeat their values for each increase or decrease of
2n in & therefore, the values ofu'igbnomatricﬁmctinns for & and & + 2nn, where
#e R and # e Z, are the same: This behaviour of trigonometric fimctions is called
periodicity.
Period of a frigonometric function is the smallest positive mamber which, when added
to the original citoular measure of the angle, gives the same value of the function. A
function is periodic, if f(8+ p)=f(8), for all &in domain of function and the least
positive value of p is called the peried of the fimction
Now, let us discover the periods of the trigonemetric functions.
Theorsm 11.1: Sine is a periodic function and its period is 2.
Proof: Suppose p is the period of sine function such that
gin (#+ p)=sin fforall fe R (A)

Now put =10, we have

gin (0 +p)=sin 0
simp=10
p=0,+m +in, +3m,...

=
-
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{i) If p=r,then from (A)
gin (¢ +7) =sin & (not true) -+ sinfg+ @) =—sin f
Thus = is not the period of sin &
(i) If p=2n, then from {A)
sin(f+2r) =sin §, whichistue - sin{d+2n)=sind
As 2m ig the smallest positive real number for which
sin {(§+ 2x) =sin §
21t is the period of sin £.
Theorem 11.%: Tangent is a periodic function and itg period is &,
Procf: Suppose p ig the period of tangent function such that

bty —mo fmdlfek O oD
p=0,xn,2x, 3, ... By aclopting ths ey
(i) If p=m=, then from (B) tan{(@ + x) = tan &, ,H;Mngmeﬁmdg
sk 3 tangent, We can prove
WA e B | @ 2nis the period of cos &
As - is the smallest positive number for which | (i) 2x ia the period of cac @

tan (@+ ) =tan & (i) 2 in the period of sec &
Therefore, 7 is the petiod of tan @ (G ssteprindefotd )
ITTTT/] 1] Find the periods of: @) sin2x () 3 +tan§
ok (i) We know that the period of sine is 2
gin (2x + 21) = sin 2x =5 gin 2(x + n) = sin 2x
It means that the value of gin 2x repeats when x is increased by =.
Hence 7 is the period of sin 2x.

x

()  To find the period of 3 + tang, cansider only tan

We know that the period of tangent is n
mn(fﬂr]:tmf => 1;a:1l(x+?w)=t:mE
3 3 3 3
It means that the value of tan g repeats when x is increased by 37.

Hence the period of 3 +tnn§ is 3x. The addition of constant number 3 fo the
tangent fimction does not affect the period.
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PV EXERCISE 11.1 _{

1. Determine whether the following functions are even, odd or neither odd nor even.
(i) sin’x (ii) sinx+cosx (i) sin*x+cos*x

Mameaates (0

. 1 .. Sinx+sin3x

(iv) tanx-+Becx {v) e (vi) s

. 1 1

(vt secx+sec’ x (i) secx+cot’ x

2. Find the periods of the following functions:

() sinSx (i) cosTx (iii) tan 3x i) oot%
. . 2x o 1. (3w

@ win(x) ooe(T) o Jen(T)

(viii) —5—33&c[7::‘x+%]

ix =
(x) 6—4mt[T+ E]

11.4 Values of Trigonometri¢c Functions
We know the values of trigenometric functions for angles of measure 0°, 30°, 45°, 60°,

(ix)-12+101an [i x)
y: 30

(&) 9+30sec (i+EJ

and 90°. We have also established the following identities:

sin (~8) =—sin @ cos (—8) =cos tan (—8) =— tan £
gin(x—8) =sin @, cos(n — 8) =—cos 8 tan (n — §)=—tan 8
gin{z+ ) =—sin & cos(R+8) =—<cos @ tan (% + (7)=tan §

sin2z— 8) =—sin @ cos(2x — @) =cos 8 tan (2x — #) =—tan

By using the ahove identities, we can easily find the values of trigonometric functions
of the angles of the following measures:
—30°, — 45°, — 6P, — 90° + 120°, £ 135°, + 150°, &+ 180°
+ 210°, + 225°, + 24(°, + 270° -+ 300°, + 315°, + 330°, + 360°
11.4.1 Graphs of Trigonomeiric Functions
To plot the graph we shall follow these steps:
(i) Table of ordered pairs (x, ¥) is constructed, when x is the measure of the angle
and y is the value of the trigonometric function for the angle of measure x.
(ii) The measures of the angles are taken along the X-axis,
(iii) The values of the trigonometric functions are taken along the Y-axis,
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(iv) The points cotresponding to the ordered pairs are plotted on the graph paper.
{(v) These points are joined with the help of smooth cnrves.

11.4.2 Graph of y =sin x frem — 2x to 2=

We know that the period of sine function is 21 so, we will first draw the graph for the

interval from 0° to 360° (from 0 to 2x).
To graph the sine fimction, first, recall that —1 <sinx<1 forall xe R.
We know the range of the sine function is [-1, 1], so the graph will be between
the horizontal lines y=-+1 and y=-1

The table of the ordered pairs satisfying y = sin x is as follows:

o | x| = | ® |25 | 78] 4| 3m]se (10m]
. 6 | 3 | 2|36 6 | 3 |2 | 3|6
or o o o1 or T or or or- or ox L1 or
0" | 307 | &0° | 907 | 120° | 150° | 180° | 210° | 240° | 2707 | 300° | 330° | 36(F
Smx| O |05 (087| 1 (087| 05| D [-05]|-087 -1 |-087|-05| ©
To draw the graph:

1 side of big gquare on the y-axizs=1unit
(ii) Draw the coordinate axes.
(i) Plot the points corresponding to-the ordered pairs in the table above
Le., (0, 0), (30°, 0.5), (60°,0.87) and s0 on.
(iv) Join the poinis with the belp of a smooth curve as shown. So, we get the graph of
y = sin x from § to 360° i.c., from 0 to 2,
As we gee that the graphs of trigonometric functions are smooth curves and none of them is
gmm“ha&(ﬁhpmmmorhwhmﬂmthmdmm.ﬁnb:hmuofﬂummmhd

continuity. Itm@:iiﬁltth:tﬂgmmdncﬁmnmmmmnhmmm, wherever they are defined
Morsover, ps the irigonomsiric fimetions sre periodic so their curves repest afier fixed intervals,

& ‘Takeicimini tscﬂle{ls:denfmllsquammﬂ:ex-mus—lﬁ

Graph of p=ginx from 0® t 360
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Inﬂ:lesmﬂarwajr we can draw the graph for the interval from (° to —360°. This will
complete the graph of y = gin x from —360° to 360° (from —2x to 2m), which is given

below:

Graph of y = gin x from — 360° to 360°

The graph in the interval [0, 2x] is called a eyele and the maximum height of the wave

from its mid line is called amplitude. Since the period of gine function is 2x, so the

gine graph can be extended on both sides of x-axis through every interval of 2x.

Properties of graph of gine function ( y = sin x)

(i) The domain is the set of real numbers {—o < x < ).

(ii) The range includes all real mumbers from —1'1o 1, inclusive, [-1, 1].

(iiiy The graph of sine function is continueus for all real numbers,

(iv) The period of sine fimction is 2z, Mathematically, we can express it as
sin(9+2;r)=sinﬂ.

(v} The gine function is an odd fimction. As the graph of sine function is symmetric
about the origin. Mathematically, it can be written as gin(—)=—sinf .

(vi) The maximum value of y=sinxis 1 when x=%+2m;.wh=re ne .

(vii) The minimum value of y=8in xis —1 when x=%+2&n,where neZ,

{viii) The x~intercepis of the sine function occurs at x=an, where ne Z.

(ix) The y-intercept of the sine function is 0.

(x) The amplitude of sine function is 1.

(xi) Inunitcircle sin@ is equal to the y-coordinate of the given point.

11.4.3 Graph of y = cos x from — 2z to 2x

We know that the period of cosine function is 2n so, we will first draw the graph for
the interval from 0° to 360° (from 0 to 2x)

We know the range of the cosine function is [-1, 1], so the graph will be between the
horizontal lines y=+1 and y=—1.




g | = ey | ome )| S S ) g || T ) S S )0 (Te) g
% 6 3 2 3 6 6 3 2 3 6

oar | or ot or or or or of or | of or of or

0° | age | 60° | 90° | 120° | 150° | 180° | 2107 | 2407 | 2707 | 300° | 330° | 360°
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The graph of y = ¢08 x from 0° to 36(° i& given below:

Graph of y = cos x from F to 360°

Inthesimﬂarway,wecandrawthsmﬁfbr'ﬁe interval from 0° to —360°. This will
complete the graph of y = cos x from =360° to 36(° i.e. from ~2n to 2m, which is given
below:

Graph of p = ¢oa x from — 360° to 360°

As in the case of sine graph, the cosine graph is also extended on both sides of x-axis

through an interval of 2x.

Properties of graph of cosine function (y=cosx)

(i) The domsin is the set of real numbers (—oo < x < o0).

(ii)  The range includes all real mumbers from —1 to 1, inclusive, [-1, 1].

{(iliy The graph of cosine function is continuous for all real mumbers.

(tv)  The period of cosine fimetion 18 2w, Mathematically, we can express it as
cos(8+2x) =cosd.




(v) The cosine function is an even function, 88 the graph of cosine fimction is
symmetric about the y-axis. Mathematically, it can be written as cos(—§) =cos8.

(vi) The maximum value of y=cos xis 1 when x=mn, where n is an even integer.

(vii) The minimurm value of y=cos x is —1 when x=an, where 7 is an odd integer.

(viii) The x-intercepts of the cosine function occurs at x=g+:rn,where ne Z.

(ix) The y-intercept of the cosine function is 1.

(x) The amplitude of cosine function is 1.

{xi) In unitcircle coad is equal to the x-coordinate of the given point:

1144 Graphof y=tan x from-nto x

We know that tan (—) = — tan x and tan (x — x) = — tan x, so the values of

tanx forx= 0°, 30°, 60°, 90° can help us in making the table.

Also, we know that tan x is undefined at x =+ 9%0°, when

(1) xapproaches % from left x—b[%] , tan x decreases indefinitely in Quard 1.

(ii) x@mmh&u%ﬁunﬁgbti.&.,x—)[%) , tam x decreases indefinitely in Quand IV,

(i) xapproachm—%
Quard IL

+

(iv) .rappmach&s-—%ﬁnmrighti.e.,x—}[—%] , tan x decreases indefinitely in

Quard T,
We know that the period of tangent is 7, 3o we ghall first draw the graph for the interval
from 0 to # (from §° to 180°).

The table of ordered pairs satisfying v = tan x is given below:

from-left ie, x—}(—%] , tan x increages indlefinifely in

K x F 4 x 2 S
0 — — | ==0|=40| — | — T
. 6 3 2 2 3 6
o ar or o ar or or
o 3 | 600 | 90°-0 | 90°H0 | 1200 | 150° | 1BO®
tanx| 0 | 058 | 173 | 40 | o | -L73|-05B| ©
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Since the period of tan x is &, s0 we have the following graph of y = tan x from —360°

fo 360°,
4 A t & &

vy Y5+ #
Graph of y=tan x from - 360° to 360°

Properties of graph of tangent fudction ( y = tan x)

(i) The domain is the set of real numbers except the values where function is

undefined domain of tagx = (oo, %), ¥ (2n+1)%, wherene Z
(ii) The range inclodes all real numbers {—co, )

(iii) The graph of tan x is not continuous for ali real mumbers. It breaks at x=(2n+1)%,

wherene Z

(iv) The period of tan function is . Mathematically, we can express it as
tan(8 +x) =tand

(v) The tan function iz an odd function, as the graph of tan fimetion is symmetric
about the origin. Mathematically, it can be written as mn(—ﬂ):—tanﬂ

(vl The x-mtercepts of the tangent function occurs at x=m», where ne £.

(vil) The y-intercept of the tangent function is 0

(viii) The amplitude of tangent function is undefined because it has no maximum or
minimum values.
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EXERCISE 11.2
r 4

1. Draw the graph of cach of the following function for the intervals mentioned
against cach:

(1) _}’=—SinZI,IE[—ZTC,2ﬂ] (11) J-'=ZBDEZI,.IE[—ZTE,2E]

(iii) y=tan 2% , %< [-%, 7] (v} y=tan 3 . < [-2n, 2x]

(v) y=sin %x , ¥= [0, 2r] (vi) y=cos %x 3 e [—m, ]
2. Onthe same axes and to the same scale, draw the graphs of thefaliowing functions

for their complete period: _

(i) y=sinxand y=sin2x (if) y=cosxandy=cos2x

3.  Solve graphically:

(i) sinx=cosx xe|[0, n] (ii) siﬁx=x,xe[0,1:]

11.5 Maximum and Minimum Values of Given Functions of

the Type
o g+bsing o g+bcosf
s a+bsin{cd+d) o a+bcos(cd+d)

¢ The reciprocals of the above, where g, b, ¢ and 4 are real numbers,
Theu:lgonomntmﬁmnﬁons like gine and cosine are periodic function because the
values of thege ﬂmgﬁun-repeal over regular intervals. These functions are fundamental
in mathematics because of the repetition of their values at definite cycles and are used
to model various teal-life situationy, guch as radio waves, light wave, and alternating
current in electricity and are slso known as a specific case of sinusoidal functions.
The functions of the form f(8)=a + b sin 8, glf)=a + b cos 6, £,(8) = a + b sin(cd +d)
and g,(9)=a+bcos{cd +d) are the types of simusoidal functions,
Now consider the general form of sinusoidal function £,{¢)=a+bsin{cf +d)...[)
here “a’ represent the vertical shift refers to the vertical translation of the graph of the
function, achieved by shifting the entire graph upward or downward. This shift, also
known as the vertical displscement, moves the function's position along the y-axis
without altering itz shape or period, Amplitude |b| is the maximum height of a wave
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measured from its midline. The period of (i) is equal to % Phase shift ‘d’ indicates

the horizontal translation of the graph of the function, determining how far the wave is
shifted lefl or right along the x-axis. A positive  shifts the praph to the left, while a

negative & shifis it to the right, aliering A@=1+3sin (28)
the starting point of the wave without S'J' _
changing its shape or period. i P‘?"’d
For Example, comsider the function — Amplimde|

fB)=1+3 ein(29). Hare a = 1 is w“‘“‘-ﬁ

vertical shift, amplitude =[5 = [3| =3 shift ==~

andpeﬁud—%ﬂrasshowninthc 5 %%‘%‘“%?@f’
adjscent figure. N | |
Now, finding the maximum and minimum values of the functions
f(®)=a+bsin(cd +d)and g(8)=a+bcos(cd +d) is not a difficult task. We kmow
ﬂmtthemaxim:mabso]utcvaluusnfsineanﬂ_gnsheam equal to 1, so the maxinmum
value of the product bsing is |B|.
Thus, the maxinmum value of £(8) ‘or g(f) is : M =a-+|b|, whenever sind=1 ot
cosf =1 where M denotes the maxittium value of the fimction.
The minimum velue of f{0) or g(f) function is m:a—|b‘, whenever sinf=-1 or
cos@=—1 and m denotes the minimum value of the function.
The sbsobutz value of b is called the Amplitude of () =a+5sind. The value of the
QSE&(_J S annunvnlue; Minimwm valne
Find the maximurm and minimum values of the following fimetions:
(i) 2+3sinx (i) 5-2cos3x (iii) reciprocal of (ii)

TR ()  Let f(x)=2+3sinx

The mazimum value of f{x) will ocour when sinx=1.Herea=2and b= 3,

Maximurn vahue of the function: M=z + 5| =2+3 =5

The minimum vahue of the function will ocour whensinx=-1 .

Mininmym value of the fimetion: m=a— |bj=2-3=-1

Thus, maxinmm vahse of the function is 5 and the mininmm value is —1




(i) Letf(z)=5—2cos3x
The maximum vaue of f{x) will occur when cos3x=1. Hereq=5and 5=—2 ,

Maximpm valye of the function: M=g + |b|=5+-2|=5+2=7.

The minimym vales of the function will pecurs when cos 3x=-1,

Minimpm value of the fimgtion: m=a- |§|=5-|-2|=3-2=3.

Thys, maximpm value of the fimgtion is 7 and the mimomm value i 3,
(ili}  reciprocal of part (i)

The reciprocal of 5—2cos3x ig

1
5—2c0s3x

1
Let g(x)=————
AT p—

To find the maximum and minimum values of g{x), first we will find the maximum and

minimum values of 5—2¢o83x, which are 7 and 3 respectively;

After finding the maximum and minimum values take their reciprocal. The reciprocal of the

maximym value is the minimum of g{x) and the regiprogal of the
minimum value is the maximum of g(x).

Meaxinmm value of g{x)=

Minimum value of g'(x)=M=—=0.14

11.5.1 Real World Applications

Ferris Wheel Problems

The first Ferris wheel was invented by George W. Ferris. He
bruilt the firat one for 1893 World's Fair. A Fertis wheel is an
important example of periodic motion that can be described
using trigonometric functions, specifically sinuscidal
functions. When we model the height of a rider on a Ferris
wheel over time, we can use these functions to capture the
periodic nature of the motion. The motion of Ferris wheel can
be modeled by f{f)=a+ bsin(ct+d) or f{f)=a+bcos{ct+d).

A Ferris wheel with 3 radius of 45 foet has its lowest point located 5 feet above
the gromnd. Ii completes ome full revolution evary 60 seconds i coumier clock wise direction,
Model an equation that describes the height of a rider on the Ferris wheel as a function of
time £, How high is the rider from the ground after 40 seconds?. Also praph the model equation.
EXITTETY, Since it takes 60 seconds for the Ferris wheel to complete one full revelution
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(one cycle), which is the petiod of the Fetris wheel, that is period = 60

E=¢5‘-El = c=E = c=£

€ 60 30
The amplitude » which is equal to the radius of a ferms wheel (in this case & = 45).
The vertical shift g is the height of the center of the Ferrig wheel above the ground.
Since the lowest point is 5 feet above the ground, soa=35+b=5+45=350,
we can model the height of a rider using (sine or cogine), because it reflects the petiodic
nature of the motion. We usually choose a cosine function if the rider starts at the
maximum or minimum height, or a sine function if the rider starts st the midpoint.
Since the rider starts at the lowest point and goes up, we can easily model the required
equation ag a negative coging fimetion so,
Ht) =—bcos(ct)+a, where ¢ is time and / is height.

Now substituting the above values we pet the function A{f)=—45cos [% t }»— 50,

which 1s the required equation of Ferris wheel.
Next, we find the height of the rider at # =40 seconds,

T
¢)=—45c0s| ¢ |+50
By =—4500s{ 21+
For t=40, we have
h(40) =—45 cns(%.dﬂ] +50'=72.5 feet

Thus, height of rider after 40 second is 72.5 feet.
The graph of the model equation i3 shown below.

Height of 3 rider after 40.ss5001s lm“y I _ .&{!)=—45m[3£ﬂ1)+50
iy m
80
Tﬂ i
k5 ke o ek S e i ot
49 :
30 :
|29 H
[
10 :
: %
5 10 15 20 25 30 35 40 45 50 55 60
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| 5T TR 4| The water level L (in feet) of & tidal river varies throughout the day.
Suppose the level of the tidal mver can be modeled by the equation:
L{#)=B+4sin [%t], where ¢ denotes the time (in hours). The water level oscillales
4 feet above and below an average level of & feet.

(a) Find the water level at ¢ = 3 hours?

(b) What is the minimum water level?

Solution (a) Given equation of water level: L(f)=8+4sin [%s)

To find the water level, substitute = 3 into the equation
L(3)=s+4sin[%-3]=s+4sing]
L(3)=8+4(1)=12

Thus, water level at +=3 hours is 12 feet.

(b) Now, to find the minimum water level, we neéed to determine when the zine
function atfaing its minimum wvalue. We know that the minimum value of

sin ¢ =— 1, substitute the sin(%t)=—lintq the equation

L(:)=s+4sin[%:]=-s__+4t—1)=s-4=4

Thus, minimum water level of the tidal river is 4 feet.

From a point 100'm above the surface of a lake, the angle of elevation of

a peak of a cliff is found to'be 15° and the angle of depression of the image of the peak

is 30°. Find the height of the peak.

FEPITTTT, Let.Abe the top of the peak AM and 4

MB be its image. Let P be the point of

observation and L be the point just below P (on

the surface of the 1ake).

From P, draw PO 1 AM.

Let mPQ =y metres and m AM = h metres.
mAQ =h—mQM =k—mPL =k—100

From the figure,

_ AQ_h-100 . e BO_100+h
PFQ ¥
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By division, we get

tanl15° _ h—100

tan30° ~ h-+100
By Componendo and Dividendo, we have

ten 15°+tan 30° _ A—100+4+100 _ 2k h

tan 15° —tan 30° k100100 200 100

tam 30° + tan 15° 0.5774+0.2679

"= mu30°—mu15°“1m=[0.5774—0.26?9 0

= k= 273.117%. =D
Hence height of the peak = 273 m. (approximately) N \

P~ EXERCISE 11.3 J

1. Find the maxinum and minimum values of the fg]lnwiug functions:

]xlﬂﬂ

(@ 3-sin3x () 3+sin2x _ - (i) —+sm(5x+x)

e X T ) ‘ ; .

(iv) E+ms[x—z] W) 1—3m2x (vi) 1+231n(x+g)

i) — (i 1—‘(‘ L (ix) =
10—2sin3x " 7+ 300s{—2x) 5—3c0s(3x—1)

2. The temperature T in dem Celsius of 2 certain city varies throughout the day
agcording to the equghan T(r)—— (Et—§)+ls, where ¢ is the time in

hours, with ¢ = ﬁ'currelpnudmgtu midnight.
(a) Fm,d-#lé maximum and minimum temperature during the day.
® - Riﬂdthc temperature at £ =9 hours (9:00 a.m.},

3.  Ameanonthe top of 8 100 m high light-house i8 in line with two ships on the same
pide of it, whose angles of depression from the man are 17° and 19° reapectively.
Find the distance between the ships.

4. P and Q are two points in line with a tree, If the distance between P and ( be
30 m and the angles of elevation of the top of the tree at P and 0 are 12° and 15°
respectively, find the height of the tree.

5. A giani Ferris wheel has 8 diameter of 60 feet. The lowest point of the wheel is located
6 feet shove the ground. The wheel completes ane full revolution every 80 seconds.




{a) Model an equation that represent the height A(%) of a rider on the Ferris wheel
at any given time £,

{b) Find the maximum height of the rider.

{c) Find the height of the rider from the ground after 35 seconds.

A child is playing on a swing in a playground. The height A(f) of the swing seat above the

ground (in metres) at time ¢ (in seconds) is modeled by the function:

A{f) = 1.5 + 1.2 sin(3x)

{2) What is the maximum height reached by the swing seat? “|

L .

(b) 'What is the minimum beight reached by the swing seat? S
{©) Huwlmgdnesﬁhkafﬁrthanmghmmplatemﬂaﬂbmkﬂnﬂfm&mnﬁm
(period)?

(d) Atwhattime(s) doos the swing seat first reach a hﬂ;gliﬂfﬁ.lz metres?

A carnival ride congists of a vertical wheel with g dlanmtcr of 40 feet. The centre
of the wheel is 28 feet above the ground. The whe&fmtataa at a constant speed and
takes 120 seconds to make one complete, {evﬂ’luuun. Mode!l an equation that
describes the height h(t) of e rider on thq whr:\cl as & function of time t. How high
ia the rider from the ground after 99 neconds? At what times will the rider be
36 feet above the ground? -‘-,‘,‘ v

Suppose the tempemmture de:yeeanhmnhcﬂofLah&rccﬂyma manth of
December  throughout the ‘day can be modeled by the equation:

T=64+8 sm[ (f—B}}*whem t ig the time in hours. The temperature oscillstes

8 degrees above mﬂbelnw an average temperature of 64 degrees,

{a) Find th:;:empmture at =9 hours?

(b) At what fime the temperature will be maximum?

(c) Calculate the maximum temperature.

Suppose the populaiion of a coastal city follows a sinusoidal patiern due to
seasonal migration. The population of the city over the course of a year can be

modeled by the equation: P(r)=7ﬂﬂﬂ]+lﬂﬂﬂﬁms[%t—%} Pt is the
population at time ¢ (¢ is the time in months, with { = { comesponding fo
Jamuary 1%). where ¢ denoted the months in a year,

(2) Find the population of the city at # =7 months.
{b) Find the maximum population.




%Lumt and Continuity \

INTRODUCTION

In mathematics, the concept of limit and continuity is foundationsl in understanding
the behaviour of functions and sequences, especially when applied to real-world
scenarios. This unit will introduce and explore how to demonstrate andfmdthe]:lmlt
ofasequenceandafunchan,undmtmdcunhmmusmddmmuﬂnmus functions, and
apply these concepts in various contexts such as economics, finance, and natural
12.1 Limit of a Function

The concept of limit of a function is the basis unwﬁmh the structure of calculus rests.
Befors the definition of the limit of a finction, it is necessary to have a clear
understanding of the following phrases.

12.1.1 Meaning of the Phrase “x gpproaches zero”

Suppose a sequence x_=iz assumes a sequence of values as:
M

G111 1
B 2!‘221‘23!24 ,2".

We can see that the sequencs x,:% is becoming smeller and smaller as » increases and
can be made as small'as we please by taking “n” sufficiently large. In other words,

1 . % . . .
=F becoming closer and closer to 0 a8 » becoming large. This unending decrease

of x, is denoted by x, — 0 and read as “, approaches zero” or “x, tends to zero a8 R — 0,
That is, the limit of the sequence x. is 0.

12.1.2 Meaning of the Phrage “x approaches infinity”

Suppose a sequence x,~= 10" assumes values as 1, 10, 107, 107, ..., 107, ...

It is clear that the sequence x» is becoming larger and larger as # increases and can be
made as large as we please by taking » sufficiently large. This unending increase of the
SEqUENCE Xy, is symbolically written as *x, —oo” and is read as “x, approaches infinity”
or “x, tends to infinity” as a—> o
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12.1.3 Meaning of the Phrase “x approaches a”

Symbolically it is written as "x—a" which .. L

means that x is sufficiently close to @ but different  The symbol x — 0 ix quite diffecent
from the mumber @, from both the left and right fomx=0.

gides of a that i8 x—a becomes zmaller and x;ﬂiummgdmw
smaller as we please but x—a=0. x =0 means that x is actually zero.

12.1.4 Concept of Limit of a Function

(1) By Finding the Area of Circnmscribed Reguiar Polygon

Consider a circle of unit radius which circumseribes a square (4-sidedregu]ar polygon)
as shown in Figure 12.1. _

The side of square is J2 and its area is 2 square units. It is clear that the area of
inscribed 4-gided polygon is less than the area of the circum-circle

m=3.142(xr* =z(lY’=x=3.142).

Figare 12.1; 4-sided polygon | Figure 12.2: 8-sided polygon  Figure 12.3:16-sided polygon
Bisccting the arcs beétween the vertices of the square, we get an inscribed 8-sided
regular polygon as shown in Figure 12.2. Its area is 24/2 = 2.828 square units which is
closer to the area of circum-circle, A further similar bisection of the arcs gives an
inscribed 16-sided regular polygon as ghown in Figure 12.3 with area 3.061 square
units which is more closer to the area of circum-cirele.

It follows that as “a”, the number of sides of the inscribed polygen increazes, the area
of polygon increases and becoming neat to 3.142 which is the area of circle of unit
radius.
We express this situation by saying that the limiting value of the area of the inscribed
polygon is the area of the circle as »# approaches infinity, i¢.,

Area of inscribed polygon — Area of circleasn — o
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(i) Numerical Approach

Consider the function f () =%

The domain of £ (x) is the set of &1l real numbers.

Let us find the limit of f(x) = x> as x approaches 2.
The table of values of f(x) for different values of x as x approaches 2 from left and right

is a5 follows:

From left of 2 »2 # from right of 2
x 1| 1.5 | 1.8 | 1.9 [ 1.99 | 1999 |1.9999|2.0001 {2.001| 2.01 | 2.1 | 22| 25 |3
)= 1]3.375 | 5.832 | 6.859 [7.8806(7.8806| 7.9988 | 8.0012| 8.012 | 8.1206 9.261 _'lﬂfﬁ-‘lﬂ 15.625|27
The table shows that, a8 x geta closer and closer to 2 (sufficiently close to 2), from both
sides, /(x) gets closer and closer to 8. |
We say that 8 is the limit of f{x) when x approaches 2 smd is written as:
fix)—8asx—2 or ___l;ig_x’-=3

12.1.5 Limit of a Function

Let B function f{(x) be defined in an open interval neer the mumber “a™ (need not be at
a). If, as x approaches “g" from both left and right side of “a” f(x} approaches a specific
number “L” then “L”, is called the limit of f{x) as x approaches ¢. Symbolically it is
written as:

lim fix)=L1 read as “limit of f{x) as x — a, is L”.

It is neither desirableng_rpﬁctimble to find the limit of a fimetion by numerical

approach, Wemusth;nblcmwa]uateaﬁmitinsom:mnchmicalway.mmeomms
on limits will serve this purpose. Their proofs will be discussed in higher classes.

12.1.6 Theofems on Limits of Functions
Let fand g betwo finctions for which I;_igrf(x):Land I;i{::g(x):M, then
Theorem 1: (i) Hx":a’,whercp}ﬂ and pe R

(iiy lime=e

Theorem 2: (a) The limit of the sum of two functions is equal to the sum of their
Himits.

Lim[ f(x)+ g()]=Lim f(x} + Limg(x) =L+ M

For example, I:.iuil(x+5)=l;§|ilx+1;§ 5=1+5=6




= S

{(b) The limit of the difference of two functions is equal to the differemce of thelr
limnits.

Lim[f(x) - g(x)] =Lim f(x} - Limg(x) = L—-M

For example, Lim (x—5)=Lim (x)-Lim 5=3-5=-2

(¢) 1fkis any real mumber, then
Lim[kf(x)] = & Lim f(x) =kL

For example, Lim (3x)=3Lim (x)=3(2)=6

(d) The limit of the product of the functions is equal wiqﬁé?ﬁ&dm of their limits.
Lim[ f(x} g(x)]=Lim f(x) - Lim g{x) =LM
For example, Lim(2x)(x+4) =Lim (Zx}EJ_ggl (x+4)=2)(5)=10

(e) The limit of the gquotient of the fnncﬂnnl is equal to the quotient of thelr Hmiis
provided the limit of denumimlnur is non-zero.

Hm[f(x)]= Py A

, provided g{x)=0 in a neighborhood of

g(x) Lﬂng{x} M’
. I-"i‘l
gand M0 .
le(3x+4)
For 1& [3:+4i|_,.. _ 644 E
x+3 Lim (x+3) T2+3 5

F—r2

() Limit ef [ f(x)]", where m is an integer
Lim[ ()] =[Lim f (] =F

For example, Lim(2z-3) =(£jﬂ (2J.c-3))SI —(5)°=125

We conclude from the theoretns on limits that limits are evaluated by merely
substituting the number that x approaches into the function,
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12.2 Limits of Important Functions

If' by substituting the number that x approaches into the function, we get (g), then one

possible way to evaluate the limits is as follows:

We simplify the given function by using algebraic techniques of making factors if
possible and cancel the common factors, The method explained in the following
important limits.

122.1 Lim* —% — 4™ where n is & non-zero integernnd ¢ > 0

Case 1:  Suppose n is 8 positive integer,
By substituting x = a, we get [%Jform, 50 we make factors.as follows:
g =(x-a)x +ax P a1l d™)

- _ 1 Z, a2 »1
me" dl:[,im(x a}x* +a:l:"'._-_|-_£::x +ta )
*—=a »r—g % = _‘-_._a

=Lim(x" ' +@" * +a' ¥+ ..+ a")

X =i 2
=g +a @ 4adr " vdd + . Fa™
=a"'4+a" 11 4a" i+ @ =na" !

Case I1: Suppose 7 is a negative integer (Say 7 = -—m) where m is a positive integer.

31 d=x
Now. ..__;':.—'g" = ¥ -a” = x* a” = x"a"
" x—a x—a x-a x-a
Lim® -g" =Lm:{ -1 J[x —a]
isa X—d el x™ g" x—a
-1 i _
= i Case—
S (ma™)  (by Case-])
=_m—m—1

Ijm[x“—a')=m._1 ==
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x+e—do_ 1 , Where # i an integer and a > 0.
s

12.2.2 Lim
x-+0 X

By substituting x = Dweha.ve( ]fnm,snmnunahmngihenummtur

P x Vrta+a) 0 x(lxra+a)
| (. A ]
""“(Jx+a+JE
_ Lim 1 2 1 = 1
=S Sxrat+da Ja+rda 2a
] x =1 W |

Solntion (@) Lim ﬁ :i [%J form.

= Yx+D)
T WSS L L JEUL. 22
x31 2 _x  x-l xi;.:‘[) =2l x
1+1 2

=—T"=2-3
1 4

i -3 {J_+J_)(3{;{JJ) i _
O ter 50BN = Lim(Jx++43) =3+43=243
12.2.3 Limit at Infinity

We have studic@ e lirvits of the functions {2, 70, 2 (%) and fE ;,whenx—ro(a
number)

Let uz see what happens to the limit of the function f{x) if ¢ i8 + 0 or —c (limits at
infinity) Le., when x — +w or x — — .

{m) Limit asx—+wo
Letf(x)=—, whenx#0

This functmnhnnthepmpertylhntihevalue of f(x) can be made as close as we please
to zero when the number x is sufficiently large.

We express this phenomenon by writing L:m1 =0

X=0




. Limit of Sequences
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(b) Limitasx — —co
Thiz type of limits are handled in the same way as limits as x — +oo.

ig, Lim l= 0, where x # 0.

E—h—0 ¥
The following theorem is useful for evaluating limit at infinity.
Theorem: Let p be a positive rational number. If x?is defined, then

Lim % =0 and Limi=ﬂ,whm'eaisanyrealnmnber.

= 3im pF T-3-—m yf

For example, ﬂ;—ﬂmﬁlm{r

12.2.4 Limit of a Sequence
Let {a,} be a sequence, the limit of a sequence {a,} isthe value L that the terms of the
sequence approach as # — «, that is,

Lim a, = L

nrm
If such an L exists, the sequence is said to converge to L and {a_} is called
convergent sequence. If no such L exists, the sequence is said to diverge.

For example, congider the sequence {a,‘:l}: ﬁsn—rw,’—ll—rﬂ
n

So, we write Lu:na —I.aml:t].

Iﬁ]ﬂn

2u+3
n+l

IR a0 2 | Find the limit of the sequence g,
We'can simplify the sequence:
3 3
_amea (23] 242

il n[1+lJ i
] n

Asn— oo, é—»[hmdl—:»{],. so we are left with: Ijma,,:H:Z
% L Bym 1+0
Zn+3

P |

=2
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Divergent Sequences: A sequence is divergent if it is not convergent. Divergence

can oceuy in the following ways:

e  The sequence may increase or decrease without bound (2.g., &, = n® diverges to infinity).
s The sequence may oscillate between different valuss and not ssttle near any one
value {e.p., a, = (—1)" oscillates between —1 and 1, so it does not converge).

12.2.5 Methods for Evaluating the Limits at Infinity

In this caze we first divide each term of both the mumerator and the denominator by the
highest power of x that appears in the denominator and then use the theorems on limit.

Sx'—10x* +1
|5 711710% | Evaluate Lim
sot= 3% +10x*+ 50

XM, Dividing numerator and denominator by x°, wo get

5 10, 1 _
s-102+1 . T UTS w0 .
= = =—00 - lim
e 30 11027 +50 sow o 10 50 3 40+0 e
¥ i
. 4xt-8y
Example Evaluate e, .
VR L 3P
EISITETY, Dividing numerator and dénominator by »°, we get
o (D43
. 4x'-5 : =ik 0- 0
Lim— — -=TLim—* % = =
a+e 30+ 2 j e 4 21 34040
£ x
13T TiEs| o Evaluate:
) Lim 2% @) Lim—2=3
=3+ 457 P (34 4y

T () Hete VX =|x=—xasx<0

Dividing numerator and denominator by —x, we get

_2 3
2-3x _ .. “x'0 _ 043

< 3
le—: = —
Ed-w "34_4:2 H_NJ1+4 .J0+4 2

Iz
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(ii) Here Jx_z=|x‘=.r agx>0
*  Dividing nmmerator and denominator by x, we pet

2_3
L 23 e 373 _0-3 3
X b 3+4x2 4+ (] -JU'+4 2
=

R =} o0 M

By the binomial theorem, we have

(1+%]‘ =1+ u(i}« n(r;l) [%]: "("_I;F_z)(%T#
= l+l+zl![1—%J+ %(1—%)[1—%}

Whenn — + oo, l,g,i,... alltendstom,:ﬂmefore
H B A F

122.6 Lim [1-a- 1J' =

I..‘im[1+l j‘ = 1+1+l+l+i+

=m\ 2! 3141
=1+4+1+0.5 +0:166667 +0.0416667 + ... =2.718281 ....
As approximate value of e is 2.718281.
1 We can also show that
Lim(1+—]' =e |
L n

Lim (1+1]‘ =g
n-x—= H

1
Deduction: EJ_:]&(I +x)F =g

Wo kuow that m[uﬂ - i)

n—#o0

Pitn=— in@) then x=—
X n

1
When 7 —o,x—( 80, Iim[1+l].=Lim(l+x)§
T — e n

0

1
= ]'_jm(1+x); o Lim [1+1].=E
0

bl ol n

Hence [jm(l+x)% =g

x =0
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x—
1227 Lim® ~l_jop a
Y]
Put &-1 =y (@
then a=1+y
Se, x=log(1+y)
From (i) whenx — 0,y — 0
Hﬂf_l:l'%l ; =;n1;
x ot log(+y) 720D o 4y
Y
cpm Y o ' pea ( Ly =0
>3 1 log,e B gt
log, (1+3) '
. [ef=1
Deduction: Iang = log,e=1
Xt x
(a1
Weknnwihathng —_ = ]ogag (1)
X —p x J
. . [ e-1 _
Puta=em(1)weknow£,% = log, e=1
Important Resulis to Remember
@) Lime =co &) ma:m[l]=u
=) ‘ : X ——m x| g
LT o0 6 | Express each limit in terms of e.
; : i v 1
6] EH-@;[],-I-;T (i) ];:1_3:]1(1+2n)-

CITITNT, (i)* Observe the resemblance of the limit with Iim[1+1]' =¢
= n
- 16

(“%]:[[HEJ;]: g |

a(1+2] -z (12 | = b -2
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1
(ii) Observe the resemblance of the limit with I;i_{zl]:(1+x)x =e
1 17
EI_P'}(I+?.H)H = [;1_1:.51[(1+2n)2n}
put m=2n, when za >0, m—0

1. 1
%_.irnn(1+2n)n =ﬂ[(1+ m).T =
12.2.8 The Sandwich Thearem
Letf, g and k be functions such that f{x) < g(x) < A{(x) for all numbers x in some open
interval containing “c”, except possibly at c itself.
Ifl.amf(x) L and leh(x) =L, then Img(x]

Many limit problems arise that cannot be directly evaluatedbyalgebmc techniques.
They require geometric arguments, 50 we evaluate an important theorem.

12.2.9 If @ is measured in radizn, then L}m“;ﬁ »

Proof: To evaluate this limit, we apply a new technigue. Take @ be positive acute
central angle of a sector of a circle with tading » = 1, As shown in the figure, O4B
represents a sector of a circle. Join 4 and B and extend OB to D such that O4 | 1D.
Also draw BC | ()C on OA.

Given |OA|=|OB| =1 (radii of umit circle)

In the Tight AOCB, sinﬁ=¥=|3_(?|
In the right AOAD, tanf="—=| AD|
@) Areapf-wﬂﬂ=%|ﬁ||3—6| ' %(l](sin B)=%sinﬁ

@) Areaofsector DAB=%FB=%(1)(B)=%B and

i) Arexof AOAD:%|&||E|= %ﬂ)(mn B):%tanﬂ

From the figure we see that
Area of AGAR < Area of sector OAB < Area of AOAD

1 6 1
= —gin® <« — < —tan P
g LY Ty N
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Assinﬂisposiﬁve,mmdivisiunby%sinﬂ,weget

l«:_i-r:L {D-:B-:E)
gin® cos @ 2

1.8, 1>M>msﬁ or mﬂ{%ﬂql

when & —0,co8— 1

Since %ﬂjg gandwiched between 1 and a quantity
approaching 1 itself. So, by the sandwich theorem, it must also | . Cx

Lo .. 8ING N2
nppmauhlthatm,{.._tfrulT—l -
Evaluate Lim =70

-
Solution Lc_tx=79,sothatﬂ=$
when @ — O wehavex— 0
. sm78 _, simx & iinx_ _
Ly =Lim === fi = == (=7
T O\
. l—cos B
Example[f 570 Eﬂ‘. -'B

I-cos @ 1—cos 0 l+cos®  1—cos’@
8% 8  1l+cosd &(1+cosB)

_ sin8 =Bina[sinl’l) 1
1+ cos 8) 8 1+cos @
m[l'msﬂj=mma-m@-m( : J=(n)(1)(ij=o
(B ] 0 &40 &0 P =0l 14+cos B 1+1

P EXERCISE 12.1 {

1. Find the limit of the following sequences if exists:
_ 2n+3 2n43 . st n —3n+1

: ; _ _ 7=
W q, n+l @ 2, +1 ) c, 2n+3 (v) é, 2t +n+4d
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2,

5.

Evaluate each limit by vsing theorems of limits:
(i) I;iug(Zx+4) (ii) E.E?(Sf—zx+4) (iii) Li:m}r’+ x+4

2%+ 5x
1 3x-2

(iv) I;.._‘%Jx"+4 v) pﬂ(v‘x’+1-4x=+5) (vi) Lim

Evaluate each limit by using algchraic techniques:

; . X -X o v | X*=5x+6 . -8
@ I8 i (@) I;E’e-{f-zx—s] ) Iﬂ?(f--_s:w]

i) Lim Lig® = 3% + 351 ()hm[f—ﬁx’+12x—8]( )Lm[ x*—1 J

T Px 32 - e at —3x+2
) Lim x—-2 (m} JJ|:+ .J_ {ix]. Limx"—a"
x—,!m_ﬂ h ze x® _ g%
Evaluate the following limits:
sin$x o SRR vy l—COS O
O Lim™ @ L @ L=
(iv) LhEsinx—msx ) Iﬂguuiax;zmsix (vi) L].JEtanx—l
:-bz g tE ] :-.E r——
4 4
1—cos 2 x S v s COSar—coshr . g =
Lim———— L Lim———— Lim——
(Vll) x=xfl xz : (‘ml) =0 COROT— m,dx (n) .'I!-l-lxz—l
() Lil]alx —x]pgx_+31ngx—9 %0 Lmlx(z -1)
= x—3 =0 ] —cosx

Express cach Timit in terms of e,

() tﬂ(ug (if) HE';(“ T (i) Igrg[ -ﬂ.

1
n
4 2
n

R R B
s < 3 e p . € =€ i = F
(vii) I;_j:’n'}{1+2f) (viii) I;EI,} abx (ix) I'—JE{1+_:)'
@ Lm% ' x<0 (D Lm® Lr>0 i) LS 0
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12.3 Continunity and Discentinuity of Functions

12.3.1 One-Sided Limits
In defining Lili'.nf(x), we resiricted x in an open interval containing ¢ i.e., we studied

the behaviour of f on both sides of ¢. However, in some cases it is necessary to
investigate one sided limits that is, the left hand limit and the right hand limit.

() The Left Hand Limit
Limf(x)=Lisreadasﬂ:el:imitot‘f(x}isequaltol.asxapproachescﬁ‘omtheleft

1.g., Tor all x sufficiently close to ¢, but less than ¢, theva]uacff{x)mnbemadeas
¢lose as we please to L.

(i) The Right Hand Limit The rales for |
Lim f{(x)=M is read as the limit of /{x) is equal to M ag x' [ calculating the left hand
i and the right hand limits

approaches ¢ from the right i.e., for all x sufficiently close to | oo the same 5z wo studisd
¢, but greater than ¢, the value of f{x) :anbemﬂde as-close | m calcnlate Timits in the

28 we please to M. preceding section,
12.3.2 Criterion for Existence of Limit'of a Function
H}f{x}-Lﬂmdonlylan;f(x)—Lmqf(x) =L
Determinewheﬂmr_ﬁﬂf(x) and Li_ﬂf(x)exist,when
2c+1 if "0<x <2
f(X)=47—-x,9if 2<x<4
X if 4<x <6
Solution i [,_'enzlf'(:x]=1imé(2x+1)=4+1=5
' I_'m%f(x)=Liuzob(T—x)=?—2=5.

Since Lim f{(x)=Lim f{(x)=S5

=5 Eirgf(x)exiﬁtsandis'equaltos.
G)  Limf(x)=Lim(7-3)=7-4=3

Lim /(x)= Lim(x) =4

Since Lim f(x)# Lim f(x)
Therefore, I:‘EE f(x)does not exist,




Unit €DPrort= o <wi> e
123.3 Continuity of a Function at a Poimt

(a) Continmouns Function

A function f'is said to be contimuous at a number “¢" if and only if the following three
conditions are satisfied.

() Re)is defined (i) Lim f(x)exists (i) Limf(x)=£(c)
(b) Discontinnous Function

1f one or more of these three conditions fail to hold at “¢", then the function fis said to
be discontinuous at “c”. .

Consider the funetion f(x) =%, discuss the contifwify of fat x= 1.

Hmf(l) 18 not defined.
= flx) is discontinuous at 1.
For f(x)=3x"—5x+4,discuss contimuity of fatx = 1.
BT Lim f(x)=Lim(32 —Sx +4)=3-5t4=2and f(1)=3-5+4=2
= Limf(x)=/0)
Therefore, f(x)is continuous atx= 1
IRETTIM12|  Discuss the cunt'mui_ty-.pf the functions f{x) end g(x) atx=3
259
(8) f()=1x-3
1~ 6 if x=3

if x=#3

(b) g(x)={% if x#3
Solution YNNI B

=Lim(x+3)=3+3=6
As  Lim f(x)=6=f(3)

f(x) 18 continuous at x = 3. It is noted that there is no break
in the graph. Figure 12.5
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®) g(x;=ﬂ if 243
x-3

As g(x) is not defined at x=13
= g(x) is discontinuous at x=13
It is noted that there is a break in the graph at x = 3 near
x =3 a& shown in the Figure 12.6.
(3T N13|  Discuss continuity of £(x) at x =3, when
x-1 , if x<3
i {2x+1 if x23

EFTTTTN A sketch of the graph of fis shown in the Figure 12.7, Wﬂmseethatﬂlere
is a break in the graph at a point when x = 3. .
Now f{i3)=2(3)+1=7
= Condition (1) is satizfied.
Lim f{x)=Lim(x—1)=3-1=2
=T Y

Lim f(x) = Lim(25+1) = 6.+1=
Lim f(x)# Lim f(x)

1.¢., condition (ii) is not aatlsﬁed.
: LlIn f {x)does not e-xisl:.

Hmm,ﬂx)mMGMuousatx 3

P EXERCISE 122 _{

. Determine the deft Find limit and the right hand himit and then, find limit of the
following fymelions when x — ¢.

x*-9

O fE)=2x"+x-5¢c=1 @) f)=""7 =3
@ f(H=|x-5, =5
2. Discuss the continuity of flx) atx=¢
3z-1if x<1
| 204516382 5 o o e ipret. oot
O SO prtixs2’ @ j== paiaiadi
2x if x»1

3x if x<-2
3, Hf(x)=¢x'-1 if -2<x<2 Discusscontimityatx=2andx=—
3 if =x22
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x+2 x<—1
4, 1If f(x)=
c+2 x>—1
find “c” so that Lm_*{ f(x) exists.

S, Find the values of m and », so that given fumetion f'is continuous at x =3
mx if x«<3

@ f@= n if x=3 @) f(x)={ " i’:;
_2x+9 if x>3 %
V2x+5-x+7
6. F(x)= v » XE2
k i =2

Find valoe of & so that fis contimuons x = 2.

2x+3, x<1
7. Given the function f(x)= }
wven the function f(x) {—x-'r41 x>l

Discuss the limit and continuity atx=1,~

12.4 Application of Transcendémtal Functions to Limits and
Continuity on Real World Problems

Limit and continuity of transcendental functions are fundamental concepts in calculus
with numerous real-world applications.
These concepts help us model, analyze and solve problems in vations fields such as
growth and decay, finance; economics, surveying and predicting long-term stock
prices.
| Fn 14| Growth and Decay (Radioactive Decay)
The radioactive decay of a substance is given by the function 4(2) = A2, where 4, is
the initial ameunt of the substance, & is the decay constant, and ¢ is the time in years.
Find the limit of the amount of substance as 1 —» .
Solntion
We need to compute the limit: Lim 4(9)= I;iEAoe'h

As 5,6 50, 50 I;i_EAoe'”=Aﬂx0=ﬂ

Thus, the amount of radioactive substance approaches 0 as time increases indefinitely.
Finance (Compound Interest)

The value of an investment grows according fo the formula for conmtinuous
compounding A(f) = P_¢”, where P, is the initial principal, r is the annual interest rats,
and ¢ is the time in years. What happens to the value of the investment a8 # 3?7
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We need to compute the Limit: EEA(:) = Iég::ﬂe"

Since &® —»o0as ¢ —» oo for any positive #, the valus of the investment grows without
bound:

LimPe" =c0
P—gen

Thus, the value of the investment increases indefinitely as time approaches infinity.
5111516 Economics (Supply and Demand)

In economics, the demand function D(p) decreases as the price p increases. Suppose
thademandﬁmcﬁonisgivenbyﬂ(p)=%,wherep1slhepncemduﬂm Find the

limit of the demand as the price becomes very large, Le., Lim D{p).
FET IS

7SR, Lim D(p)=Lim -

Frw = ptl
As p—»oo, the denominator becomes very large, m}mL'fl 0
. —ep

Thus,asthepncebecumeﬁvcrylarge,thcdﬂnandappmmhﬁﬂ

i CL0E1T| Astronomy

The apparent brightness B(d) of a star'clecrmes as the distance from Earth increases
fnﬂomnglhemvemesquarelnwﬂ@)= » Where L is the star's luminosity. Find the
limit of the brightness as d—)oﬁ;

Lim B(d) < Lim

As d - o the denominator becomes very large, so:
¥ I B
d—:-uedz

Thus, as the. distance increases indefinitely, the apparent brightness of the star
approaches 0.

P EXERCISE 123 4

1. A substance decays exponentially following the formmla A(f) = 4, ™", where 4,
is the initial amount. Find the limit of A(f) a8 1 - w.
160, 000
2. A town’s population is modsled by P(6)= T . What is the long-tcrm

population as 1 — 0.
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3. A company’s weekly sales (in thousands) follow the functiem §(f) = %
ig the limit of S{f) as ¢t - = and what does it represent?
mnn

4, Signal strength S(d) st & distance 4 from a tower is modeled as S(d)= e

() Whatis the signal strength at d= 107
(i) ‘What happens to signal strength a8 2 —><0 ?
5. A stock price grows according to the function P{f)= 50" L
(i) Find the limit of P(#) 8 ¢ — 0. ~O
(i) Caloulate the price after 10 years. Q-
6. The factory’s cost function is given as: . O ™~
10x+500 H#  x<100
12x+300  if x:»»m,@"' '
Is the cost function continuous at x = 1011'? N\
7. Inflation is modeled by I{f) = I, c"w wh::re I, is the initial price index and ? is
the number of years :
(1) Find the inflation rate nﬂm',iym if Iy =100.
(ii) What is the expected.;_mpc index after 10 years?
8. The cost to produce x ﬂﬁ;s
5x+20 if x<10

(x} 16x+10 if =x>10

Is the ooqtﬁﬁéuon continmous at x = 107



Differentiation

The ancient Greeks knew the concepts of ares, volume, centroids etc. which are related
1o integral calculus. Later on, in the seventeenth century, Sir Isasac Newton, an English
mathematician (1642 — 1727) and Gottfried Whilhe G, W. Leibniz, a German
mathematician, (1646 — 1716} considered the problem of instantaneous rates of change.
They reached independently to the invention of differential calculus, After the
development of calculus, mathematics became a powerful tocl for dealing with rates
of change and describing the physical universe. 2

13.1 Tangent to a Curve at a Point i

Let Px, f(x)) and Ofx + &, f(x + &x)) be two Qi + 8, ffx + Bx))
points on arc A8 of graph of f defined by the -

equation y =#{x) as shown in Figure 13.1. A AT L

Where 8x is the increment in the value'of x (read ‘s
25 delta x) Oy’s M N

The line PQ iz secant of the curve ahd slope of Figu 1.1

secant line passing through P_(j‘;,ﬁx)) and ({x + 8x, fix + 8x)) is:
= RO = Jx+8x)—f(x) (1)

PR o
Where meecis slope of the sccant line, y
Revolving the secant line PO towards
P, some of 1t8 successive positions
PQ, PQ,, PQ,, ... arcshown in the
Figure 13.2. Points Q.(i=1 2, 3, ...}
m? getting closer and closer tn the ﬂ::; il
point P and PR are approaching .
ZET0

In other words, as &x — 0), the point O approaches P, and the secant line becomes
the tangent line. The revolving secant line becomes the tangent line 7 at P while 8x

My

-
e
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approaches zero, that is,

momLi JETEI@) g

where m,_ denotes the slope of tangent line. We see that m is the limit of m_ as O
approaches P along the curve y = f{x).

LETT M 1| Find the gradient and an equation of tangent line to the graph of
fix) =x*-2 at the point P(—1, ~1).
EITTTT To find the gradient or slope of the tangent line at point (~1,-1), putx = —1

in equation (2)
—Lim f(_1+ax)_f(_l) S W SN 17—
Hean = g0 8x e (2 | LS Liget
4 Jr"f{x_]"l’—-z
. (-1+8x)" -2-((-1)*-2) L I
o &x | “i%_ II'* 2 f“_J
_ g 1m B+ 8E -2-(1-2) L i p
e 0 Sx "-4'-'3-2"-‘1?' Y32 34
; | | H"“. | i |
g T 2eet o241 ISl I AEX
T B0 8 ey 8x - =3
—4|
=LimM=Lim(x—2+ﬁx)=—2 i
B30 Sx &0

Now to find the equation Q'Eﬁngent line we use the point slope form of equation of line
with slope =—2 and point{—1, —1)
y—(D=2(x~(D) = y+1=—2x-2
or y=—2x-3, which is the required equation of tangent line.
The graph of f and tangent line are shown in the above figure.
13.2 Derivative as the Limit of a Difference Quotient
Let f'be a real valued function continuous in the interval (x,x]);j)f(domainoff),
then difference quotient Sx)-f(x) &)
r—x
represents the average rate of change in the value of fwith respect to the change , —x
in the value of independent variable x.




If x, approaches to x, then LimJ ) —JS(¥)

R x—Xx

provided this limit exists, is called the instantaneous rate of change of fwith respect to
x and i written a8 f'(x).

If x, =x+8x i.e., x—x=4&,then the expression (i) can be expressed as

Fx+8x)—f(x) (ii)
A
and Ijmf(x"'a;z—f(x) (iii)

provided the limit exist, is defined to be the derivative off (ot differential coefficient
of f) with respect to x and is denoted by f'(x) (read as *f— prime of ™). The domain of
J' consists of all x for which the limit exists. If xe.D and f'(x) exists, then fis said to
be differentiable at x. The process of finding {15 called differentiation.
13.2.1 Derivative as the Rate of Clianpe of Velocity
The rate of change iz a fundamental concept in describing the motion of an object
moving in a giraight line. In physics; this is typically analyzed using position, velogity,
and acceleration, which are all related through derivatives (rates of change).
The position versus time graph provides a simple interpretation of the average velocity
over a given time interval.
Suppose a particle moves in a straight line and its position at time ¢ is given by the
function s(f). The average velocity over the interval from f to £ denoted by v, is
defined as:
s(8)—s(x :

Vo= (ﬁtl}_f( ) @)
Equation (i) also represents the slope of secant line passing through the points
(#.5(5)) and (¢, 5(z,)) . If the interval ¢ — ¢ is not small, this average velocity does not
acenrately represent the rate of change at time £.
To illystrate this, consider a particle whose position at time ¢ (in seconds) is given by a
function s(f) =¢2+ ¢ in metres. The average rate of change over various time intervals




e (L =

starting at ¢ = 3 seconds is shown in the table below:

-M-mmuu

Imterval t=3gecato =3 secs =3 gecsto =4 sece t=3 pocsto t=3.5secH
63

Average 3(5)—3(3)=30—12=9 3(4)—.9(3}=20—12=s 3(3'5}_3{3}_?—12_?5
velocty | 5_3 2 4-3 1 35-3 05

& i ,

Sﬂy ' [ [ &0

40 40

30 30

20 20

10 0

We observe that these values are not closely approximate the particle's velocity at
exactly 3 seconds. To obtain a better approximation of velocity at x = 3, we use smaller

intervals:

Interval Average velocily

2 TR T

oS el o (G +3H12_071_, .
31C3 0.1
Z =

=Y s =0l e | OMNA 12 0O
3.01-3 001

=3 acca o 3,001 socg | 1C00)"+3000-12_ 0007001 __
3.001-3 0,001

We see as the length of the time interval decreases, the average velocity becomes
instantaneous velocity af 1 = 3. Based on the trend, we estimate the instantanecus
velocity to be approximately 7 m/sec.

Thus, over a sufficiently small interval, the velocity changes negligibly. If ¢, is very
close to 4, the average velocity over ¢ —; approximates the instantaneous velocity at £,
As 1, approaches £, the everage velocity is called the ingtantaneous velocity.

This is similar to approximating the slope of a tangent line by calculating the slope of
8 gecant line. Mathematically, the instantaneous velocity denoted by vae 18 given by
the following limit:

v =Lim* =5 (provide the limit exist)
Al f—f

For convenient, if ; = ¢+5¢, then as 4, —¢ =5¢— 0, thus above equation becomes:

o };’.ﬂ 8 + 5;: —5(2) (i)
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In other words, the instantanecus velocity is the derivative of the position function 5(3)
with respect to time.
A particle moves along a line such that its position after ¢ hours is given
by: s(f) =42+ 21+ 1{(in miles)

(a) Find the average velocity over the interval [2, 5]

(b) Find the instantaneous velocity at £=13
EUTTTY, (=) given position function s(f)=4f +2¢+ 1, where 2<¢<5

The average velocity over the interval 2<7< 5 is:

{55 4(5)’+2(5)+1—[4(2)’ +2(2)+1]
S 5-2 3
_111-21_90

== = 30 miles/hax
3 3 cs/hours

(b) Instantaneous velocity can be found using the formula

Average velocity—v "

Instantanecus velocity = Y T+ 80 206D

B a8t
_A(3+80) +2(3+80)+1-[ 43)*+2(3)+1 ]|
=Lim -
&30 St
=Hm‘4(9+66t+5t‘)+6+2§t+1—43
o d &z
. 362451445 + 61 25¢1+1-43
=Lim
%30 5t
2
=Lim43+266t+4ﬁt —43= L].m2651+45f
B0 &t &+ D &
im0 ) i (26448)=26
&0 B &0

Thus, instantaneous velocity at =3 is 26 miles/hour
13.3 Process of Finding Derivative f(x) by Definition
12.3.1 Netation of Derivative
Several notations are used for derivatives. We have used the functions] symbol f'(x),
for the derivative of fat x. For the function y = f{x).
y+8y=/f(x+ &) (iv)




Dividing both the sides of (iv) by &x, we get

Sy _ fx+8x)—f(x) ™)
o it
Taking limit of both the sides of (v) a8 éx — 0, we have
Lim? = Lip/ FH1 ¥ /() (i)

W20y &0 &x
Lmsylsdenotedhy %, so (vi) is wﬁttenas _f'{x)

Re—=0 Jy

The symbol %iauaedfnrthcdm'iuﬁva nfywithreupacttub:jndhureitiﬂ

not a quotient of dy and di. zisa]sodmotedbyyﬁ ~

Now we write, in a fable the notations for derivative of y = f(r} used by different
mathematicians:

Name of mathematiclan | Lelbmiz | Newton | Lagrange Eunler
Notition used for deivaitive % & ‘:"—é rwery | 1@ D)
If we replacex+5:byxnndxbya,_ﬂlenthc expression f (x + &x) — f (x) becomes
JS(x)—f(a) and the change & in the independent variable, in this case, isx —a.

So, the expression J/ T 8%) 7500 50 wriston ag L)@ (vi)
& x—a

Taking the limit of hie expression (vii) when x — a, gives Lim? &2~ @ _ ()
X g x—0a

Here f"(4)is called the derivative or gradient of fatx =a.

13.3.2 Findmg /'(x) by Definition of Derivative

(Given a function f, then f (x) if it exists, can be found by the following four steps:

Stepl:  Findf(x + 8x)

Step Il:  Simplify /(x + &) —f(x)

Step TIT: Divide /(e + &x) — (3 by 8x to get f("”a;‘z‘f("‘) and simplify it.

Step IV: Find Limf(“a;:‘f(‘)

The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principle.
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Find the derivative of the following functions by definition
(@ fx)=c¢ b fe)=+

@ f)=c

) fixt+dx)=e

(i) fx+d)-Ax)=c—c=10

ap Sx+HE)-flx) 0 _

(i) 5 =0

: S L

(iv) Lim = = Lim(0) =0

B =0

Thus, £(x) = 0, that is, %@:n

(b) fEx)=x
@ f&+8x)=(G+a)y
(D) fle+8x)—Ax) = (x+ &) — 2% =27 -+ 2ol +(8x)? — x* =(2x+ 5x) &ix
iy SEH-S() @+, G Br20)
x 8x -

@) LimlEESE Limeaed a9=2:

ie., fix)=2x
Find the derivative of /x st x = a from first principle.

EXTETEA I f(x)=+/x , ihed
® f(x+5x)=Jx_+af and (i) fx+80)—fF(x)=x+r—+x
_ (o —fx)x+ -+ ) (mﬁcnalizingﬂle]
Jr+8c+/x numerator
x+dx—x
Jx+8x +vx
. &
ie, f(x+5r)—f(x)——m+ﬂ,; @
(iii) Dividing both sides of (1) by dx, we have
Slx+8)—f(x) _ i
8x Sr(v/x+dx +/x)

1
RN T P

(k= 0)
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(iv) Taking limit of both the sides as &x — 0, we have
. flx+d)—-f{x) _ .. 1
& dx _ﬂ[m+&)
1

ie., fo):J;iJ;:z:f; , (x>0) end f’(ﬂ)=m

Alternate method: Puttingx =gin f(x)=x, gives f(a) =Va
So, G- f@=vz-a

Using alternative form for the definition of the derivative, we have

JS(x)-f(a) _ Jx-e

xXx—a xX—a

_Wr-Aa)Eeda)
= i ida) (rationalizing the mmmerator)

x—a 1

T (-a)x+Va) Vx+a |
Taking limit of both the sides of (2) as x— g, gives

rea) @

. f@-f@) _,. 1¢ v 1
R xoa reyadde Ja+da
. 1
ie., f{a) = Z—J;

which is the gradient of fat x = a.
Example F]) @RI Y % at x=— 1 by ab-initio method,
X

ST, Here, y = ., s0 @
1 -
J‘+3y=m (ii)

Subtracting (i) from (ii), we get

1 ()
T x+8x) # P(x+Ex)’
_ {x+(x+8x)} {x—(x+8x)}

2 (xc+ &0)°

8y




_ (20 Ex)(-8x) _ —Ex(2x-+8x)
C Pa+i) Pl &)
Dividing both sides of (iii) by &x, we have

Sy —Sa(2x+&)  —(2x+8)
& P+l Flx+&)
Taking Limit as &x — 0, gives
Lie ¥ [ —(2%+88)
08y &0 x5 (1+8)°
)
*(x%)

gy o2 g W 2 2
e N = e

{Using quoticnt theorem of  limits)

The gradient of fai x =—1 ism = 2.
13.4 Derivation of x* where n€'Z
(2) We find the derivative of x* when # is positive integer.
(b)) Let y=2x". Then
y+8y =(x+8x)"
and By =(xtE) "
Using the binomial theorem, we have

Ey=[x" ol B+ "("7;)::'-’(5:)=+ +(ax)*]-x"

\L.e., 6y=ﬁx|:nx’"+"("—2_!1)x""- Sx+ - +(Er)"1] (i)
Dividing both wides of (1) tiv Bx; gives
gx—y= " +"(”—2'|Dx"—=- St e 4 (B (i)

Note that each term on the right hand side of (ii) involves 3x except the first term, so
taking the limit as &%U,we%%:m"‘l

Asy=x" g0 %(f):n «x"!




(b) Lety=x"where n is negative integer.
Let # =—m(m is a pogitive integer). Then

y=x" =$ (i)
1 -
and y+dy _(x+ax)' (ii)
Subtracting (i) from (ii), gives
iy — 1 1 o —(x+&"
T e 2~ 2 (x+E)"
PO —— ax+7'"("’2? D 2@y (5]
- )" '
(expanding (x + &x)™ by binomial theorem)
[m"‘l+mx!—35x+ "“'l'(&)"_l)
. 21 A
x"(x- &)™
md Yo L (m“ MED ez +(Ex)"'lJ
5  x"(x+8&x)" 21

Taking limit when &x —» 0, we get

b . 1 — - ™! (allferms contaning &x vanish)
dv x*-x _
= —m‘“- 1 . I-j'.'
- _m[-u)ll
ax ™ [ —m=n]
ff{'x}" = nxn—l
dx

So, we have proved that %(f)=nx"1, ifne?

The above rule also holds if n € 0-Z, i.e. for rational powers.
d 2 22 2
@)= =
dx 3 353
The proof of %(f):m'—l when pe  — Z is left as an exercise.

For example,




<> nmensts (|
13.5 Connection Between Derivatives and Continuity
Calculus is a powerful branch of mathematics that allows us to study change and
motion. Two of its foundational concepts of continuity and derivatives are deeply
connected. While each concept has its own definition and application, understanding
how they relate to each other in essential for solving resl-world problems in
mathematics,
As discussed in previous unils, 8 function is contiruous &t & point if its graph has no
breaks, jumps, or holes gt that point. On the other hand, the derivative of a function at
a point measures the instantaneous rate of change or squivalently, the slope of the
tangeiit line at that point. However, this definition depends on the function being well-
behaved around the point. This leads to a8 well-known result:
If a function is differentiable at a point, it must also be confinnous there. This means
that differentiability implies continuity, but the reverse is not necessarily true. For
example, consider the fumction fx)—1x| , clearly this fumection is continuous at x = O(see
Figure 13.3). Now we check the differentiability of f{ix)=Ix| atx=0.
Sx) =|x|
J0)=[0]=
f{0+ &) =[0+ 5xl || ™
so  f(0+&)-f(0)=|5|-0

and 4 O+8)—f(0) |8x|

&x B 4 x
| 8x| 2
Thus  f'(x)=Lim_s
Because |dx| = 8x when &x >0
and |ix] =—8r~ when8z<0, e i
8o, we consider one-sided limits
le@ leg—l and le|5x| Lml_ax —1
B—0" {x &0 fx -0 B Be—0" ax
This cighit homsidl el Lok ool Timits e mivt gl thewetone; the ]_mlzldnesnotmst
G-+

This implies that derivative of f at x = (t does not exist, and thus, there is no tangent
line to the graph of fat this point (see Figure 13.3). However, the derivative exists at
all other points of fi.e,, it is 1 on the right side and —1 on the left side. A function can
be continyous at a point but not necessarily differentigble thers.
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¥ EXERCISE 13.1 {4

Find by definition, the derivatives w.r.t. ‘x" of the following functions defined as:
@ 2°+1 @ 2-x (i) % (iv) x(x—3)
X

Find % from first principle and find gradient of the curve at the given point:

1) Jx+2atx= ii =

() x=6 [ ) 'J— ax=a \\
2 {;

(1) Find the derivative of x* atx= 8 from the first principie.

(ii) Find the derivative of x* + 2x+ 3 by definition.  ~ 1~

Find from first principle, the derivatives of the ﬁ}l]l:ﬁ;m% expressions w.r.L their

respective independent variables:

M (3:-2)° @ @+ ;iuf‘(awwf

Fmdl.hegadmntandequauonﬂﬁhetangmthnemy I —4x+latx=2

For the fimction f{x) = 2+, calculgfehs equation of the tangent line at x=—1.

Find the coordinstes of the poml: &ﬁngﬁncy and the equation of the tangent line

for fx) =x*-2x+l atx=1. '\.

Fmdthegmdwntof!hscme}'{:t) 3 +2ratx=1.

Find the gradient and m@luamn of langent line o the graph of f(x)= Jx at

x=9 { ("J

The position of & Jhcr t hours is given by: () = 2°-3¢ + 1 (in kilometres)

D Fmdthsa velocity over the interval [1, 4]

(ii) Find ;Eg,a:hsmmneous velocity at ¢ =2

A stnnq.ilﬂfnwupwards and its height after ¢ seconds is given by:

8(2) =16 + 32¢+ 10 (in feet), Find the instantaneous velocity at ¢ = |

The outdoor temperature (in °C) over time is modeled by: T =— 2 + 121+ 10,

where { is the time in hours, Find the instantancous rate of change at ¢ =2,

13.6 Theorems on Differentiation
We have, so far, proved the following two formulas:

1.

% () =0 that is, the derivative of a constant function i zero.

é(_f):n;"" , power formula (or rule) when n is any real number.




Now we will prove other important formulas (or rules) which are used to determine
derivatives of different functions efficiently. Henceforth, in all subsequent discussion,
1, 2, A etc, gll denote fimctions differentiable at x, unless stated otherwise.
3. Derivative of y = ¢f (x)
Proof: Lety =cf(x), Then
() ytdy=cflxtbtx)and
(i) y+8—y=cflxt &x)—cflx)
or By =c[ flxt &x)—f(x)] (Factoring out c)
(iiD) %’: cl:f(x‘|' ﬁx}—f(x)j|

&x
Taking limit when éx — 0 |
(iv) Eﬂ%=9ﬂ L f(x+52-f(x) . e%f(x+ﬁ:—f(x)

A constant factor can be taken out from a limit gigh:
Thus, & _ of'(2), thatis [ )] = o7(x) OF S [ W= e [f0)]

| 4 4

T 6| Calculate %(3;3) . 3%@: y (Using Formula 3)
4 44 2 .

Solution =3x 513 =4x3 (Using power rule)

4. Derivative of » sum ora difference of functions
If f and g are differentiable st x, then f+ g, f— g are also differentiable at x end

[+ 2] = £0)+£'(x), that is,%[f(xhg{x)] =£Lf(x)]+%[g(x}]

Also [ F()=g()] = £ (-g'ce), that is, 2 [F(x)- g @] =2 F @12 [e )]

dx dx dx

Proof: Letgé(x) =Ax) + glx). Then

(@) ¢br+dx) =flx+ &) +glx + &) and

(i) @l +8x) —$x) =S + &) +glx + &) — [Ax) + 2(x)]

=[f(x+ &) —f(x) +[glx + &x)—g(x)] (rearranging the terms)
i FEH)—$x) _ [+ f(x) glxt+8)—g(x)
dx & &x
Talding the limit when dx — 0




(v) Lim?®t®)$() =m[f<x+ax)—f(x) _g(x+80)g(®) ]
8 x—s

fx =0 By &x I dx
i EO)—f(x) . glx+bx)—g{x)
- &x Ha S

(The limit of a sum is the sum of the limits)

#'(x) =1"(x) + g'(x), thatis [(x) + g(x)]'=1"(x) + g' (x)
or LI f(+g0]= L/ [g()
The proof for the second part is similar.

Summmﬁermcafnrmﬂamhemmdedwﬁnddm@wofmmthm]
two functions

7| Find the derivative of y= %x‘ +§x3+%_.j:’+ 2x+5 wrt x

o |

Solution y=3x‘+3x3+lx’+2x+5
4" 3" T2
Differentiating with respect to x, we have
& _ 4[3 e x’+1x+5:| “'[Ex*j+i(3f)+i(lx=]+i(zx)+im
a4 %

de  dx de\ 3 de\ 2
(Usmgfnnnula-ﬂ-)
=%i(f)+§i(x’)+;i( )+2 (x)+0 (Using formula 3 and 1)
=%(4x"1)+§(3f"’1)+5(2x’")+2(1.x"1) (By power formula)
=3y +2___x-’45ﬁc+2

[T 001 8} Find the derivative of y = (2 + SY® + 7) with respect to x.
Soluﬂun y=Z+5)P+7)=x+5 + T2+ 35

leferenhahngmthrespecttnx,w:get

dy_d
- dr[xs+5x3+1f+35]

_d 5 4 .2 d :
_‘ﬁ(x 45— ()+T )+ —-(35)  (Using formulas3 and 4)

=5 453+ Tx2x* 40
=5x"+15x" +14x
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Find the derivative of y = (2 + 2){(x—x)

y=(2Jx +2)(x—x)
=2(x +1)- Vr(Vx - = 2Jx (W + Dx 1)

3 1
=2 (x—1)=2(x? —x7)
Differentiating with respect to x we have

b _ 4 - x]

dx  dx
—2[ x x |=2|= 2 21
3x-1
—3x1 x’ BJ_—— =
J_ J_

5. Derivative of a Product (The Product Rule)
If fand g are differentiable at x, then /g is.also differentiable at x and
[ )] =/ '()g) +f (x) 5'(x), that is

d _[d d
EU(x)g(x)] = [ &Lf(x)]] g(x) +f (x)[ dx[g(x)]]

Proof: Let ¢(x)=£(x)g(x). Then
(i) ¢x+&)=F(x+8x)glx + &x) and
() Plx+0x) = $(x) =S (e + &) ol + 8) (%) 26)
Subtracting and adding f(x) g(x + 8x) in step (ii), gives
lx + bx) — ¢x) = [ (x + 8x) gz + 8x) —f (x) glx + 8x) +F (x) glx + &x) — fAx)glx)
=[x+ &x) —f(x)] glx + &x) + (x) [ gl + &x) — glx}]
() KB SOy L0000

&x &x
Taking limit when &x — 0
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(iv) Lim ¢(x + fix) 4 (x)
-0 o

o [ S8 £ glx+8) ()
~ | EH T, g0+ 1oy, SEHE)E)]

=Eﬂf(x+ ﬁ;’i‘f{x) .gjﬂg(x+&r}+£jﬂf(x}.£‘iﬂ glx+ E;i—g(x)

(Uging limit theorem)
Thus ¢ (x) = 7/(%) g(x) + £(2) £2) [Eﬂg(x+&’¢) =g<x)]

or %Lf(x)-g{xn=§U{x)]-g{x)+f(x)[%s{x)]

[Peru010] Find derivative of = (243 +2)(x —x) with respect to x.
y=(2J;+2){x—J;)

= 2(Vx + D(x—x)
Differentiating with respect to x, we get’

Q=z%[(~f§ +)r=x)

dx
= 'i,._r- Y =G AL
_2_[ ( .:+1)J(x )+Wx+1)—(x JJ_F)i|

=2 [lx;ﬁle(x—JI)HJEH)x [1—%;5"]]

\2

=2 !

2"

o2 (2
—2- J_ (‘J_ 1)[ -J_ J:|

Vr+2x-vr+24x]

JEy+HE+ D) x [1—#)]

=T[x_
3x-1
Jx
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6. Derivative of a Quotient (The Quotient Rule)

Iffand g are differentiable at x and g(x) # 0, for any ye IX(g) then 2. is differentinble
b4

atx and (f(")j . S (g()-f(x) g'x)
[e(x)T

g(x)
] [i Lf(x)] gx)— f(x) [ﬁlg(x)l]

that is i[f (")] _
dx| g(x) [e(x)]*

Proof:  Let g(x)= I 1hen
g(x)

. _ Sf{x+dx)
() #(x+&x)——g o i) and

o _ fe+tx) _ f(x) Sl Bx) g(x)— f(x) glx+8)
Al i g o0 50+ )
Subtracting and adding f{x) 2(x) in the numerator of step (i), gives
S 80—y = L B0) B S0 £(0)— 1(2) gla+B5)+ £(x) g(x)
g{x) g(x+ax)

[CF (et 8x)— f(x)g(x)— f{x) (gx+ tix)— g(x))]

1~
" g(x) glr+ &)
iy PE+ED—$() 1 [f(x+ &x)—f(x)
&x g(x) glx+8x) fix
Taking limit when &x — 0

(iv) Lim #(x+8x) 4 (x)
x>0 8ix

. I (fEEB—f) . . gEE)-g(x)
'ﬁ“ﬂ[g(xj g(x+ax>[ & 2@y J]
Using limit theorems, we have

=S @ s FW F@  (+ Linsesa)=g()

0910 B850




i [f () j ) g F) g'0)

g(z) [g0P
d ( . [%Lf(x))]g(x) - fG) [E"(g(x))]
dx | g(¥) [e(=)F
[FTTTIML| Differentiate H;ﬁ"'swiﬂzrespectmx
Let $(x)= B g

x+1
f(@)=2x"-3x*+5 amnd g(x)=x'+1

Now f"(x)=%[2x"—3x’ +5]=2(3x")-3(2x)+ 0=6x"—6x

and g'(x}:%[.r’+1]=2x+ﬂ=2x
Using the quotient formula ¢/(x)="-" ("}g?f?t" ?{]}‘) £G) we obtain
Az
i[zﬁ-af+s]'=(ﬁx=—6x)(x=+1)—(2x’—3x’+5}(zx)
dx +1 ="+ 1Y
_ 62" —6x" +6x" —6x—(4x" - 62" +10x)
(x* +1)*
_ 62" —6x" +6x" —6x—4x" +6x” ~10x)
(x*+1)
=2.1|:“+I!5;:cz ~16x
(" +1)?

P EXERCISE 13.2

1. Differentiate w.r.t °x’.

@D x*+27+5 (ii) x"+2.§%+3 i) 2¥=3
2x+1
Gy GH=x) [J_ —lj (v) (x—5)3-2)
Vx Jx
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PR | : 2x—1
(viii) (ix) ——
x-3 V3 +1
a—x o NE+]
@ 2 o 4

3
- +1)(x2 -]
2. Fmﬂ%jf;:tﬂ %j{r I:',{_r;e[)

x?—1

[#5 )

= Ed
Differentiate (x 'i;l}{xf =D with respect 1o x.

4. Ify= J_ , show that 2 ‘f_é.;-_;r: 2Jx

5. Ify=x"+2x%+2 prove that %: 4;;,‘!.-",, A

13.7 Application of Differentiation

We will apply concept of d.lﬂ'ermtlauon to real-world problems such as (profits on
diminishing retumns, environmental factors, financial investments, population growth,
spread of diseases, movement of particles, time-speed in tramsportation, structural
stress, material required that ig changes in construction).

Profits on Diminighing Returtis

A company's profit function iz given by P(x) = 100x— 5x* ,where x is the
number of units prodiiced. Determine the marginal profit when x = 8 umits.
EXITTT, The marginal profit is the derivative of the profit function with respect to x.

P(x)= %{mnx-' 52%)=100-10x

Now, substiute x = &: P'(8)=100— 10(8) =20

So, the marginal profit is 20 when 8 units are produced (in the given currency).
Movement of Particles

A particle moves along a line according to the position function
s(f) = 4£ -3¢ + 21, where s(f) is the position in metres and ¢ is the time in seconds. Find
the velovity and acceleration at f =2 seconds.

Ve]ocit}' is the derivative of the position function:

v(t)=%(4¢"—3:’+2t)=12r’—61+2
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Substitute £ =2:
w2)=1202y" - 6(2)+2=48—12+2=38

So, the velocity at =2 is 38 m/s.

Acceleration is the derivative of the veloeity function:

a(:):%(lzﬁ-m 2)=24¢-6

Substitute t =2
a(2)=24(2) - 6 =48 —6=42
8o, the acceleration at 2 = 2 is 42 m/s?,
Flnunmal Inveriments
A bank offers a compound interest rate on an investment, and the value
ufthe investment after # years is given by F{f) = 5000(1-+0,04t}%. Find the rate of change
of the investment value after 10 years.
EXTTTTN, The mate ufchm]ge of the mveshnmtlsﬂmdmvaﬁve of ¥{z) with respect to £.

V'(e)= E(smm +0.046)*) = 5000(2)(15-!- 0,0403(0.04)

V' (£)=400(1 + 0.04¢)
Substitute t = 10: <.
¥'(10) =400 {1+ 0.04 x 10)=400(1+ 0.40) = 400 x 1.4=560
So, the investment is growing at a rate of Ra.560 per year after 10 years.
Stractural Stresy
LTI 8| The stress on a beam under a varying load is modeled by S{x) = 500x — 22,
whare S(x) is the stress in pascals (Pa) and x is the distance (in metres) from the beam’s
fixed end. Find the rate of change of siress at x = 5 metres.
i 0L The rate of change of stress is the derivative of 8{x) with rezpecitox.

sg;)_;%(sw.x—zf)ﬁm—&f
Substitute x=5:

&(5)=500—6(5) = 500—6x 25=500—150=350
So, the stress is increaging at a rate of 350 Pa per meire at x = 5 metres.

P~ EXERCISE 133 _d

1. A car’s position at time t is given by s(f) = 5£ — 3# + (. Find the velocity by
differentiating the position function with respect to time.

2.  Structural strees on a bridge is modeled by the finction S{x) = 100 — 5x%, where x
is the distance from the center of the bridge. Calenlate the rate of change of stress
at that point.




<> e (I

A company's revenne fimction is given by R (x) = 1000x —10x%, where is the
number of units produced. The cost function is C{x) = 300k + 2000.

(i) Find the profit fimction P(x)

(ii) Determine the marginal profit when x = 15

An investment grows according to the function A() = 10000(1 + 0.057)°, where
A7) is the value of the investment and 7 is the time in years.

(i) Find the rate of change of the investment after 8 years.

(ii) What is the investment value after 8 years?

The position of a particle moving along a line ig given by &{f) = Sih: 127+ 8¢,
where 5(f} is the position in meters and f is the time in acconds. ‘u

(i) Determine the velocity of the particle at =4 (“\&

(i) Find the acceleration at / =4 seconds 4N

(iii) When is the particle at rest? <:‘,:

The pogition of a car traveling along a straight hj wﬁy is given by

x(f) = 30t 2— 44, where x (1) is the djslamemﬁ d'in kilometres and ¢ is the time
in hours. /(\ \,

(i) Find the car's velocity at =13 hm:@? y

(i) Determine the car's acceleranongﬁ 3 hours

The atress on & beam under s vsryfng load is given by $(x) = 40x — x°, where 5(x)
is the stress in pascals (Pa) and's is the distance from the fixed end in metres.
Calculate the rate of ehang;of s at 6 meters.

The cost C{r) to ccmmmeba cyhnr]rlw.'l tank depends on the radius of the base,

and is given by C(?\{Bﬂ()ﬂm’ Lo

ufﬂ:ebnsem&t\h\:mundlmmmpmmlsﬂmmlnﬂh:waﬂs. Determine the

mtecfch&ﬁﬁ}ifthe cost at r = 4 metres.

%\
N




Vectors in Space

In this unit, we will look into the rectangular coordinate system in three-(limensional
space and explore the fundamental mathematical operations involving vectors in space.
We will begin by umnderstanding the dot product (or scalar product) and the cross product
(or vector product) of two vectors and leam about their geometric interpretation. Further,
we emphagize their practical applications. For example, we will see how these concepts
can be used to calculate the area of a triangle and the area of a parallelogram. Finally, we
will explore the extensive use of vectors in three-dimensiongl space, particularly in
physics, where they play an important role in determining forees, velocities, and other
egsential physical quantities. For example, determining the work done by 2 constant force
when moving an object along a specified vector.

14.1 Vectors (Recall)

In previous classes, we leamed about two fundamental quantities: scalars and vectors.
A scalar is a quantity that has only magnitude or gize, such as mass, time, density,
temperature, length, volume, speed, work ete. On the other hand, a vector is a quantity
that has both magnitude -end direction, for example displacement, velocity,
acceleration, weight, farce, momentum, electric and magnetic fislds, ete.
Geometrically, awector is represented as a directed line segrment Hﬂ&thd as its initial
point and B as the terminal point.

In two-dimension (R?) & vector has components that can be represented by an ordered pair
[x, ¥] of real mumbers. For the vector 4 = [x, ¥], x and y represent the components of g,
Addition of Vectors: For amy two vectors g =[x, ;] and ¥ = [x,, ¥;], we have

ut+y= o, p]+ Pl =k 00t
Sealar Multiplication of a Vector: For u =[x, y] and g€ R, we have
aw=d[x, y|={ax,ay]
Equal Vectors: Two vectors 1 =[x, 3] and v=[x,, ,]of R*are said to be equal
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if and only if they have the same components, That 1s,

[%, n]=[%, »,] if and only if x,=x, and y =y,and

we write u =y \ D\
In other words, two vectors i and vy are said to be equal, if

they have same magnitude and same direction,

Parallel Vectors: Two vectors are parallel if and only if they are non-zero scalar
multiple of each other.

— 3 —
For example, vectors AB; — AB and 2 AB are parallel.

Magnitude of 8 Vector

The magnitude (or norm or length) of a vector in 2D
represents the length of the vector from the origin to the'
point represented by the vector. For any vector & =[x, y] »¥
in R*, we define the magnitude, &5 the distance of the
point P(x, y)from the origin O, iy

Magnitude of OP =|OP| = |u{=4{2* +
Now, we will leamm some mathematical operations
involving vectors in three- dimensional space.
14.1.1 Rectangular Coordinate System in Space
In space a rectangular coordinate system is constructed =
using three nmtually orthogonal (perpendicnlar) axes,
which have origin as their common point of
intersection. When- sketching figures, we follow the  y-e-eeeeey :
convention that the positive x-axis peints towards the
reader, the positive y-axis to the right and the positive
z-axis points upwards,
These axes are also labeled in accordance with the right-
hand rule. The fingers of the right hand, pointing in the direction
of the positive x-axis, curled images toward the positive y-axis,
and the thumb will point in the direction of the positive z-axis.
A point P in space has three coordinates, one along x-axis

N-.-z -
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directed «istances aslong x-axis, y-axis and z-axis z Ha bc)

respectively are q, b and ¢, then the point P is written with a E
unique triple of real numbers as P (g, &, ¢) (sce figure). éc
14.1.2 Concept of a Vector in Space 5 -
The set B® = {(x, , z): x, ¥, z € R} is called 3-dimensional / ______ e
space. An element (x, y, z) of R® represents a point P(x, , 2), #

which is mniquely determined by its coordinates x, y z Px,v.2)
andz.Giwnavecturginspace,theree_m;stsauniquepnim
Pz, y, z) in space such that the vector OF is equal to u (see
figure). Now cach element (x, y, z) € R® is associated with a
umquaorderedtnple(x,y,z),whmhrapresentsthavector
u=0P = [x,7.2].

14.1.3 Fundamental Mathematical Operations for Vectors in Space
We define addition and scalar multiplication in R by:
(i) Addition of Vectors: Foranytwuvectumu'=[x,y,z] and v =[x, 3, £'] we have
(ii) Scalar Multiplication of a Vectors For g =[x, y, z] and a € R, we have
au = alx, y, z] = [ax, ay, az] _
The set of all ordered triples [, y, 2] of real numbers, together with the rules of addition
and scalar multiplication is called the set of vectors im B°. For the vector
% =[x, », Z], %, y and z arc called the components of . The definition of vectors in B®
states that vector addition and scalar multiplication are to be canried out also for vectors
in space just as for vectors in the plane. Similarly, we define in £
{a) The negative of the vector u =[x, ¥, z] a8 ~g =(-1)u {—x,— y,— 2]
(b) The difference of two vectors v =[x’ ¥', 2] and w = [x", y",2z"] as
v—w=v+(-W) ¥ —-a",y - .2 2"
(v) The zero vector as 0= [0, 0, 0]
{(d) Equality of twp vectors: Two vectors y=[x} y, 2"] and w=[x", ¥", z"] are ¢qual
that is v = w if and only if x’=x", p'=y" and z"'=z".
(e) Position Vector
For any point P (x, , 2) in ", a voctor 4 = [, y, z] is represented by a directed line
segment OF, whose initial peint ig at origin. Such vectors are called position
vectors in &2,

e

1--'- -




14.1.4 Magnitude of a Vector in Space
We define the magnitude, norm, or length of a vector « = [x, 3, z] in space by the distance
of the point P(x, y, z) from the origin O.

O - -7 + 7
EZTT0T 1] For the vectors, s =[1,-2, 3], = [2, 1, 3] and
w=[-1, 4, 0], find the following:

(i vtw (i) 2w (i) |u]
(v) [v-2w]| () [2n-y+3w|
EMTTTAG p+w=[2-1,1+4,3+0]=[15,3]
ﬁi) 2!=2[_ 1: 4: ﬂ] = [_2: 85 0]
(i) [u|=[L-23] =P+ (27 + @ =1+4+9 =414
(iv) lv—2w[=[[2+2,1-8,3-0]=]|[4,-7,3]|
= J@ +( T+ = fle+ 9 +9 =74
V) ‘23_;—1_.r+3}_vi=‘2[1,—2,3]—[2,1,3]+3[—1,4,0]'=|[2,—4,6]—[2,1,3]+[—3,12,0]
=[-3,7,3] = (37 +(TP +OF =B+ 49+9 =67
14.1.5 Components of a Vector,
As in plane, we introduce three special vectorsi=[1, 0, 0], z
j=[0,1,0] and & =[0,0,1]in&*

As magnitude of § = Y + 0* + 0* =1

magnitade 0f j = /0 + 1> + (* =1 and

magnitude of k= /0* +0* +1* =1, 8o, i , |
and & are ¢elled unit vectors elong x-axis, y-axis and z-axis respectively. Using the
definition of addition and scalar multiplication, the vector [x, y, z] can be written as:

u=[x, y,z]1=[x,0,01+[0, y, 01 +[0, 0, z]
=x[1, 0,01+ »[0,1,0] + {0, 0, ]]=xi + y ] + zk

Thus,&uchvacter[x,y,z]hﬂmhemiquelympmmtedhyx_i+_ﬁ+zﬁ.
Unidt Veetor
A wmit vector is defined as a vector whose magnitude is unity. In three-dimensional

space the unit vector of the vector w = xi+ yi+zl_ciswrittenas; (read as u hat) and
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x y j+ z
../Jr’+y‘+5z2 Jx’+y +z Jx’+y’+z‘_
Intarmsoflmitvectorg,bandgthasumg+zoftwovectors
g=[xl,yl,zl] and 1v=[x,,y2,zz]isw1ittcnas:
E+!=[I1+125J"1+yzazl+32]

=(x +x)i+( +J"z)i+(zl+zz)£
BT 1132 | Find the unit vector of u=2i+ 5 —%.
(XTI, Given vector u =24+ 57—k, to find the unit vector

= =@+ G+ =430

The unit vector is:
n i 2!+5j_£ 1 " i u
= et o z - 2i+5j-k
] Jso B LT

Thus, # = (2:+5_J.T k)lsﬂmmqmmdumtvactnr

Ifg=2£+3£+§, g—4§_+6_:1__+2i_c and w=—6i—9j—3k, then show that
u,v and ware parallel to each other.
y=4+6]+2%=2(2+3]+E)

L2 =2 _
=> wuand v are parallel vectors.

w=—6{-97-3k
==32i+3j+8) .. w=-3u

= 4 and ware parallel vectors,
Hence u, vand w are pacallel to each other.
14.1.6 Properties of Vectors
Let u, v and w be vectory in the plane or in space and let a, b € R, then they have the
following properties:

(i) wutv=v+u (Commmtative property)

(i) @E+rN+w=p+E+w (Associative property)

(i) u+o=wu (Additive Identity)

iv) ut+t(-lDu=u- (Inverse for vector addition)
(v) alptwl= az+ aﬂ (Distributive property)

() a(bu) = (abu (Scalar multiplication)
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Proof: (i) Since for any two real mmbers e, b €R, a + 5=5 + a, it follows that for
any two vectors ¥ = [x, v, z] and v = [/, ¥/, 2] in R*, where components of wand v
belong to .

We have ity =[xy zH[x. )y, 2]

=[x+x,y+¥,2+Z]
=[x'+x,)y +yz+z] =t a+h=hp+ag
=[x, 21+Ix » 2]
=y-+u
So, addition of vectors in B iz commutative.
(ii) Since for any three real numbers @, b, c € R, (a + b) + c =g+ (5 + ¢), it follows
that for any three vectors, ¥ =[x, y, z], v = [x, ¥/, 2] Il.lld.ﬂ" [=", ", 2"] in A,
Where components of u, v and w belong to R.
We have Rty +w=[x+x,y+y,z+z7+[x" " 2"
=[x +x)+a", (p +y) tye +2) + 2]
=[x+ +x)y+ Py, 2+ + 2]
{a+h_}+c=a+(b+c)
=xpz] Iy ¥, 2+ 27
=u+(r+w)
So, addition of vectors.in R? iz sssocistive,
(iii) Since for any real mumber a-and 0
a + 0= g, it follows that
for any vectors, g = [x, y, z], and o = [0, 0, 0], where g is the zero vector in R,
We have g+'g=[x,» z]+[0,0,0]
=x+0,y+0z+0]
=x»zl=u
ut o=y

Thus, p is the'additive identity in R

(iv) Since for any real mumber g, there exist —a such that
a+{(—g)=a—-a=0 , it follows that
for any vector, =[x, y, z], there exists —« = [-x, -y, —z] in #*
Such that ut{g)=ppzl+ -y =x+{=),y+{32+(Z)]
=lx-xy-yz-z]
= [0, 0, 0] = g, where g is the additive identity
ut(u)=e
Thus —« is the additive inverse of u in R>
The proofk of the other parts are left a5 an exercizse for the students.
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14.1.7 Distance Between Two Paints in Space
If EP:nndaP; are the position vectors of the
points E(xuyuzl ) and P:(xz!yzszz)
—

The vector AP, is given by

—_— — —n

BB =O0R-OR{%- %, - 3.5~ 4]

—_—

Distance between B and F, = |BB)|

= J(m-x) +(n-n) +(z-2)’
This is called distance formula between two points £ and B in B,
Suppose a8 butterfly's flight path pessed through points (2, 4, 7) and
{6, 1,3), where each unit represents & metre. What is the magnitude of the displacement
the butterfly experienced in traveling between these two points?

EXTITTETT, Distance between two points in three-dimensionsl space is given by the
formula

1-3 ) Px(xnynzw)

d=fx-x) +(n-3n) (5 ~=7)

Substitute the coordinates of the given points info the formmla:
d=qf(6-2) +(1-4) +(3-7)
d=J16+9+16 =41 = 6.40

The magnitude of the displacement the butterfly experienced in traveling between
these two points is approximately 6.40 metres.

14.1.B Dirgtfion Angles and Direction Cosines of a Vector
Let 5=al':'=xj+yi'+z§ be a non-zero vector, lst @, Aand y

denote the angles formed between r and the uait coordinate
vectors #, jand k respectively,

where O0<a <z, 0<sf<mand 0<ys=m
) The angles a, § and y are called the direction
angles of the vector 7.

(ii) The numbers cos &, cos § and cos y are called direction cosings of the
vector r.




<> Manain

Important Revult:
Prove that cos’ @ +cos® f+cos’ y=1
Proof: Let

z=[x,y,2]=:r§'+yj+2£

|g|=~.f;|c’+y‘+z2 =

mmé[

[l

:f:]lsthﬂumtwctmmﬂmdmhnnufﬂmvmtorr oP

It can be visualized that the triangle OAP is a right P

triangle with m .24 =50°.
Therefore, in right irangle OAP,
O4d «x

cos @ = — = —, fimilarly
OoP r

cosp=2, cory == 4

The numbers coso =— ,maﬂ yandms;r_—i are called the direction cosines
ofOP '

cos’ @ +cos” f+cos” y =+
L

W EXERCISE 14.1 4
1. Let w=3i+2j-5kpp=i—5j—kandw=—4i— j+7k Find the following:
@) wkdvew S () v-3w (it)) [u-+w).
2. Find ﬂ:_f-.nﬁguihnienflhewclmgand write the direction cosines of v.
(i) w=3-2j+6k (i) v=—4i+4j+2k (iii) v=-6i+8;
3. Find{,so that [2i+(t—1)j+tk|=
4. Find a unit vector in the direction of v=—{+4/-8%
I u=2+ -3k v=—i+4/+2k and w=3{-2j+k, Find 8 unit vector pareliel
to du—3v-+2w.
6. TFind a vector whose
(i) magnitude is 5 and is parallel to 3i+4j-k
{il) magnitude is 7 and is parallel to —i+ j+£.
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If u=xi+2j+3k, v=i+yj—3k and w=—2{—3; represent the sides of a
triangle. Find the values of x and y.

8. The position vectors ofthe points 4, 5, Cand Dare u =i+2j+k, v=7i+8]+4£,

10.

12,

w=—i+k and z=i+2+2k respectively. Show thﬁtﬁiﬂ parallel toa';.

We say that two vectors v and w in space are parallel if there is a scalar ¢ such

that v = cw.The vectors point in the same direction if ¢ > 0 and the vectors point

in the opposile direction if ¢ <0 N

(a) Find two vectors of length 2 paralle] to the vector v =2¢~ 4+ 4k.

(®) Find the constant aso that the vectors v=i—3;+4k: a0d w=ai+9-12k
are parallel. ’

(c) Findavectoroflengthi:‘inthedimﬁonopppgitdlhutufg=i—2£+3]_c.

(d) Find @ and & so that the vectors 3;—£+4kand ai+bj—2k are parallel.

A spacecraft moves from point (120, 240, 350} to point (136, 210, 80) in
kilometres, What is the mag:nimdg.e{ the displacement vector in kilometreg?

. Find the direction cosines for thuﬁircn vecton

@ u=-6i+3j+26 (i) v=4i+2j-5k

(iif) PQ, where (9,3,13) and (X11,6,19).
Which of the folllnwil:jlg'h‘iplc can be the direction angles of a single vector?
() 45°45°,60° (i) 30° 45° 60° (iii) 45°,60°, 60°

Product of ectors: Multiplication of two vectors is an important algebraic
opetation i algebre. This slgebraic operation plays a fundamental role for
nderstanding various physical snd mathematical real-life situation. Unlike the
multiplication of numbers, product of vector can be performed in two distinct ways.
The two primery types of vector multiplication sre the dot product and the cross
produet. The dot product is a scalar number while cross product is a vector quantity.
14.2 Dot or Scalar Product
14,2.1 Dot or Scalar Product of Two Vectors and Its Geomefrical Interpretation
We shall now consider products of two vectors that originated in the study of physics
and engineering. The concept of angle between two vectors is expressed in terms of &
scalar product of two vectors,




Definition 1:  Let two non-zero vectors g and v, in the plane or in space, have same
initial point, The det product of  and v, written as u- v, is defined by
u-v=|u||y/cos@

Where 0 in the angle between g and vand 0 <0 <x
Definition 2:
(8) If u=ai+hjand g=a,i+bzimtwonon-mvectomintﬁeplanc. The dot

product u- vis defined by:

u-y=aa,+bb,
(t) I u=ai+hj+ek and v=a,i+h, ]+ c,kare two non-zero vectors in space.
The dot product - vis defined by
u-v=a,8 tbib + ¢
(25 The dot product is also referred as the sealar produst or the inner product.
Prove the equivalende of sbove twa definitions of dot product of twa
vectors:

(i) Ify =[x,y ]mmdw={x),y,] are two vectors in the plang, then v w=x,x, +, ¥,
(ii) If v and w are two noh-zero vectors in the plane, thenv- w=|y | lw| cos &, where
f is the angle between v and wand 0 < A < .,
Proof: Lctg_aﬁdﬂbethe sides of a triangle then the
third side opposite to the angle 8, has length |y —w|

Bylawofodsines,

»

|¥—w P =¥+ w?—2|v| bl cos & (1) ¥
if ¥ =[x, y]andw=[x,y,] then The lawr of cosine:
Y—w =y -, %~ ¥l Esainswon

So, equation (1) becomes;

(m—nY+ -yl =x+y+5+y;-2|v||w|cos 8
—2x%, — 2y y,=—2|¥||w|cos @
=  xxtyyv=|v||w|cosb=v-w
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14.2.2 Deduction of the Important Results
By applying the definition of dot product to unit vectors i, j and &, we have

k. k= |k||k|costP=1
®)  1j=i]J]cos90°=0
J-k=|||K|cos90°=0
k.i= |K}[i|c0890°=0

14.2.3 Projection of a Vector along Another ¥ éclor
In many physical applications, it is required to know “how much” of a vector is applied
along s given direction. For this purpose, we find the projection of one vector along
the other vector.

———
Let O4 = g and OB=v
Let € be the angle between them, such that0 <9 <=x.
Draw BM L OA.Then OM is called the projection of
v along u.

Yiom e figire: 8= @) Wuak i,

OB
OM =|ORB|cos 0 =|v|cos@ (1)
Now, #(v=|u||v|cosd =ul|(|v|cosd) =|x|(OM)

= {magnituds of ). (projection of v along u)
Thus, geometrically, the dot product of two vectors represents the product of the
magnitude of one vector and the projection of the other vector onto it. In other words,
the dot product of two vectors shows how much one vector extends in the direction of

4

¥ i o ISR ko

Now, by definition, cosf = — 2)
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Similarly, projection of galongy ===
¥l

14.2.4 Properties of Dot Product
Let u, v and w be vectors and let ¢ be any real number, then
@ uv=0=2u=0orv=0oruly

@  wy=vu (Commustative property)
(i) w.(+w)=w.v+u.w  (Distributive property)
) (cuw)v=c(u.y) (c is scalar)

®  wu=

14.2.5 Dot Product of Vectors in terms of thefr components
Letu=aji+bj+ohkandv=ai+hj+ c,kbetwonun-zmmtors
From distributive law we can write:
u-v= (gi+hj+ek) (ai+h j+eck)
=aa,(i- D+ab(i- H+aci- B b, (i - D+ (i - +be, (- B
+ ey (k- D+ebyk- N+ecilk: J
= wv=am+hb +gc : H‘-i'

Henceﬂ:edotproductofthWmthsmoftﬂnpmduntofthmmmpmdmg
components.

Example[] Show that the components of a vector are the projections of that vector
along i, j and Erespectively.

Proof: Letv=ai+bj+ ck,then

Projection of y along ¢ =

I*E:

4

=(@i+b)+ck) i=a

Id:
H-...—

Projection of v along j =

| =(ai+bj+ck) j=b

|1:
I:n- ]

Projection of v along k= —(a;_'+bJ_i+c§)-5=c

| &

Hence components a, & and ¢ of vector g—a;+bi'+c§ are projections of vector v
along i, j and k respectively.
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Prove that in any triangle ABC

(i) a=b+c*2becos A {Cosine Law)

(i) a=bcos C+ccoe B (Projection Law)
Proaf: Let the vectom a, b and ¢ be along the sides BC, C4 and AB of the triangle
ABC as shown in the figure.

) atbte=0

= g=—(+g
Now gra=(b+c)-(&+o)
= =b-bth-gteg-bte-¢

= @=P+2%-c+Z (- bc=c'b
= &=+ +2bccos(a—A)
=+ —2bccos d
(i) a+bte=0
= =b—¢
Taksdotpmductmﬂlg
g-a=—a-b-g-¢
=—gb cos{rx — C) —ac cos(r — 5)
=—ab{—cos C)— ac{—cos B)
a* =abcos C+accos B
= a=bcos C+ccos B
vaeﬂmt c08 (o —f) = 008 & 008§+ sin 4 sin 4
Proof: | LatOAnndOBbeﬂlemtvectnrsmthe 5
xy —plane making angles @ and § with the positive x-axis. 4 A
Sothat mZAOB=a—#
Nowa=msai+aimi B
J—
and OB =cos i + sin 8 ‘a—f

—r —P

OA - OB = (cos aii-+sinex j)- (cos Bi+sin 8)
= |0A4]||OB|cos{z—F) =cosa cos § +sing sin § N
oos(a — B) = cos & cos f+sime sin 8 (- |CA|=|0B|=1

L J
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14.2.6 Orthogonality of Two Vectors

Definition: Two non-zero vectors 4 and v are orthogonal (perpendicular) if and only if
u-v=0.

The dot product of two vectors u and v becomes [l N
The zero vector o is orthogonal to
zerowhen u Lv,8=90"or %mdius. every vectnr because:

I -u‘q’
u-v =|ulL|ycos 90°=0 GIATEE

Thus, g-vy=0 & ylvw

BTl oM u=3{— j—2k and v=i+2j -k, then find u-v.

EIIOET, - = G3XD) + @) + (2)-D) =3 X

If u=2i—4;+5k and v=4i-3j-4k, thenprove that wand v sre
orthogonal.

4 v=02}4) + () + HH=0

=> u and y are perpendicular
Find a scalar a so that the veotors 2i+aj+ 5k and 3i+j + akare

orthogonal.
e OO, Let u=2i+a j+5k and v=3i+ j+ ek
1t is given that u and'gare orthogonal
uy

— (2.;+-le'+ 50).Gi+ j+ak)=0

= _ 6+o+5x=0

G a=-1
14.2.7 Angle Eetween Two Vectors
The angle between two vectors u and v is determined from the definition of dot product,
that is

(a) u.v=|u||v|cos 6, where 0<8<x
= cosf=—2%
||| ]

) FHu=aithjtgk and y=ait+hjt+ck, then
uv=aa,+bh+ o0,
lu|=J@+8+3 and |v|=@+B+c




aa, + b +ee
NGB+ &+l +c
IFTTIM12] Find the angle between the vectors.
u=2—j+k and y=-i+j

SOV wov=(2- J+E)-(H+ j+ 0F)
= Q1)+ (1Y) + (1) =3
and  |u|=|2-j4+k| = J@E P =6
|vl=| =i+ j+0k| = YU + O + (0 =2
1]

cosB=

Now cosf= ¥
o] |3

T T
V62

__B

2

B=E

6

—

[ETTTI13| Show that the vectors AR = 2/ — J + k, BC=i
AC = 3i — 4 — 4k are the'sides of a right triangle.
TN, Given 4B =20 — j + k, BC=i-3] - 5k and
AC— 3 4 — 4k
—_— — -
Now  AB+BC= (2i-j+ k) +(-3j-5k)
= 3i— 4j— 4k=AC (third side)

—_— — —r

AB, BC and AC form a triangle ABC.
Further we prove that A4BC is a right triangle

—s —

AB-BC= (%-j+B)-G-3]-50

=2X1D) +(-1-3) +H{1)(5)=2+3-5=0
.. ABLBC
Hence, AABC is a right triangle.

—3j — Skand
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14.2.8 Work Done By a Constant
Force

If a constant force F, applied to a body, acts

at an angle 9 to the direction of motion,
then the work done by I is defined to be the

product of the component of F in the
direction of the displacement and the
distance that the body moves,
In figure, a constant force F acting on a
body, displaces it from 4 to 3.
Work done = (component ofFalongAB)(dmﬂ]mmem;
=(Fcos Q) AB)=F-AB=F d (
Z 14| The constant forces 2§ + 5+ 6k a.ml =i — 2_; kact on a body
displaced from position F(4, -3, -2) to 06, 1, —3_)..;__]5",__1pﬂﬂ:|emmlwoerk done.
Total force = (20 + 57 + 66)+ (Si = 2j - &)
= F=i+3j+5k .
The displacement of the body = PO = (6= )i + (1+3)) + (-3+2)k
=  d=2i+4j -k
Work done =F- &'
—(;+3_;+5g) (2 +4j - B)=2+12—5 =" units

\JPEXERCISE 14.2

1. Find the cosfugs of the angle & between wand ¥ :

() w=2Fj+k v=—is2j+2 () 2=[-32 5], v=[1,6-2]

If a+b+c=0 and |a|=3, |5|=5 and |¢|=7. Find the angle between a and b.
If |a|=3, |b|=4 and |a+5 =5. Find the angle between g and b.

Calculate the projection of g along b and projection of b along g when:
() @=2i43j-k b=i-2j+4k (i) a=4-2j+3Kk, b=i+j+k

5. Find a real number a so that the vectors # and v are perpendicular:

b2

=

() w=aitdjt+k, v=i-2jtak (i) wu=ait2aj-k v=itaji+3k
6. Find the number z so that the triangle with vertices A(3, 0, —2),8(0,3,1) and
C(L, 1, z)ins & right trinngle with right angle at C.
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7. If & and bare unit vectors and 24 is the angle between them, show that

L

2
If |@+8| =|a—&]|, then show that g and bare perpendicular.

9. () Show thatthe vectors 3i—2j+k, i-3j+5k and 2i+ j—4k form a right

:’i—b‘.

triangle.
(if) Show that the set of points #(4,—1, 2),0(1,3,—1)and R(-2, 4, 6)form a
right triangle. p\:*i‘
10. Prove that the cos{ea + £) = cosa cosf —sing sin g {}f
11. Prove that in any triangle ABC. 2 )
(i) b=ccosd tacosC (i) c=acosd + mﬁ\ﬂ

(i) B = +a’ —2eacosB (V) @ =a’+ ‘f:iabmsc

12, Show that for any vectors @ and 5, |§|_|ﬁﬂ§1§‘”—"5|ﬁ‘+|§!

13. Find the work dong, if the point at which/he Constant force F=2i+5,+3kis
applied to an object, moves it from Ié:(/%(ﬂ&l)m B(7, 5 3).

14. A particle, acted by constant ﬁ&rﬁ& =3i+4j-3kand Fy=i+4j-k, is
displaced from  A(2,1, 3)m3£s,44) Fmdmewmkdm

15, Apartmlcmdmplacedfmnrﬂmpmnt A(5,—5,—7) to the point B(6,2,—2) under
the action of mnsmt-:]'mces defined by 10i—j+11k, 4i+57+9% and
~2i+ j-9k. Shqvg:ﬁ:.t‘)thctoml work done by the force is 102 units,

16, A force ofmaﬁ}.deamumﬂgpmnem 4j+3j—kdisplace the point of

phcmgq"&o%n A(2,-1,3) to B(7,3,2). Find the work done,
oy
14.3 Cross Product or Vector Product
143.1 The Cross Product or Vector Product of Two Vectors and iis

Geomeirical Interpretation
One of the key multiplication operations involving vectors in space is the cross product,
Unlike the dot product, which results ig a scalar, the cross product of two vectors yields
a vector quantity. The vector product of two vectors is widely used in Physics,
particularly in fields of mechanics and electricity. It is only defined for vectors in space.
Let 4 and v be two non-zero vectors. The cross or vector product of g and y gives a
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vector that is perpendicular to both the vectors 4 and v, written a8 u X v, is defined by
uxy=(ul|v|sind)n

where 0 iz the angle between the vectors, such that 0 < 8 < w and nis a unit vector

perpendicular to the plane of 1 and v with direction given by the right-hand rule.

Right hand ;

Figure {(3) Figure (b)
Right hend rule

4] If'the fingers of the right hand point along the vector u and then curl towerds
the vector v, then the thumb will give the ditection of n whichis u x v. It is
ghown in the figure (a).
(i) In figure (b), the right hand rule shows the direction of v X u.
14.3.2 Parallel Vectors
If u and y are parallel vectors, then (8:=0 =>sin 0 =0).

uxv=0 o O uxy=0
And if ux v=0,theneither gin®=0 or |u|=0 o |v[=0

(i) Ifsind=0 =>@=0° or 180°. Which shows that the vectors u and v are parallel,
(i) Ifg=0orp=0 then since the zero vector has no specific direction, we adopt the
canvention that the zero vector is parallel to every vector.

Zew, vesior is both parallel and papediculsr © cvery veclor, This apparcmt
contradiction will cause no troubls, since the angle between two vectors is never applied
when one of them is zero vector.

14.3.3 Derivation of Usefil Resunlis of Cross Producis

By spplying the definition of cross product to unit vectors
i, j and k, we have:

(@) ixi=|i||i|sin0°n=0

Fxj =1jllilsin0° n =

kxk = |k||k|sin(®zn =

0
0
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i =|i|]j|sin90°k=k [ The cross product of )

b ixj=| ot .
ixkE=|/||k|an90%i=i i, J and k arc writien
kxi=|

k i=i k
 =|k||i|sin90° j=j | fe celic pamm @
= = | Te given figure is ' )

=

() wuxu=|u||lulsin0n=0 helpfil in remembering

14.3.4 Properties of Cross Product
The cross product possesses the following propetties:

() uxy=0ilu=0o0or v=0 (i) uxv=—vxu
(i) ux (vtw)=uxv+uxw (@) ux (@)= (ku)xv=Kuxv)
(v) uxu=0 '

The proofs of these properties are left a8 an exercise for the students,
14.3.5 Analytical Expressions of g % y (Determiftant formula for & x v)
Let u=ai+h j+ck and v= a,;‘+b2,_f+c.‘,_,g, then
ux v={(ait+hj+ck)x{(ait+hj+eck) |
=aa,(ixD+ab(ix j}+ac,(ixk) (by distributive property)
+ Ba,(xD+hb( x D+heGxB) | ix j=k=—jxi,
+ e (kx)+ebEx ))tecExk) | jxk=i=-kxj,

= abk—ac, ]~ Bak + besitas ) — o
= uxv={(he, —eh)i-(ac, - qa,)) + (ah — ha)k @
The expression of 3 % 3 dsterminant
i jok
=g b o|={a—ab)i—(ac, —ca,)j +(ah —ba)k
a b g

The terms on RH.S of equation (i) ate the same as the terms in the expansion of the
above determinant.

(ii}

TR

which iz known ag determinant formula for u x v.
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The expression on B_H. 8. of equation (ii) is not an actuzl determinant, since its eniries ars

not all acalars. It ia zimply & way of remembering the complicated exprezsion on BLHS of
eguation (i},

Find a vector perpendicular to each of the vectors. Also verify that g
andbare L toaxh
a=2—j+k and b=4+2j-k

Avectnrperpendiculartobo&thevectnrsgandéiagxg.

i j ok
axh = 2 -1 1/=—i+6j+8k
4 2 =

Verification:
aaxb=(A-j+ k) H+6j+85)=Q)D+N6)+(OXS) =0
and & axb=(4+2j—k)(H+6/+88) = (DD +(2K6)+(-1(B) =0
Hmsegxginperpmdiclﬂarmbuthﬂ]ﬂvectomg_aﬁdlg.
14.3.6 Angle Between Two Vectors(Cross Product)
The sing of the angle between two vectors g and b is determined from the definition of
cross product.
If  is the sine of the angle between@and b, then |ax b| =|a|| b | sind
sin 6= 12%21
|al |8}
(ST0016| If g =di+3) +k and b= 2i— j +2k. Find a unit vector perpendicular
mboﬂlgmdg.mspﬁﬁdthesine of the angle between the vectors g and .
t j ok
Solution axb=4 3 1=7-6j-10k
2 -1 2

and  |ax B = (D) +(-6)* +(-10)" =185
axd Ti-bj-10k

A umit vector perpendicularto aand b= =

axp B

=

Now |a| =&+ +{1) =+26
B = @ + (1D +(2)* =3
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If 8 is the angle between g and b, then |a x b =|a||b| sin®

= sin g8l 185
la||B] 3426

Prove that sin (z + ) = sin @ cos § + cos a sin §
Proof: Let OA and OB be two wnit vectors in the xp-plane making angles o and 8
with the positive x-axis respectively.

So that m2AOB = a+

Now 0.4 cos @i+ sine j
and GB cos (—@)i+sin(-£)j
—cosﬂ;—smﬁj )
O.BxOA {cos i —sin 8 /)x (cosaxi -+ sine 7} 4
i R
—_— — s
= |OB| |04 | sin{fe+ H)k = |cos 8 —sinB. O e i
cosg _sing O \fl\‘

= sin{ex + B)k =(sine cos F+cos ¢ sin fik B
sin{e + B) =sina cos §+cos o 5in §
In any triangle ABC, prove that

8 e - € (aw of Sines)
sind" sinB sinC
Proof:  Suppose vectors g, b and ¢ are along the sides BC, CA and AB respectively

of the triangle ABC.
a+btc=0
= bte=-a (i)
Take cross product with ¢

bxct+exe=—axe
bxe=cxa (. cxc=0)
=  |bxe|=|exal
|5 || sin(z — 4)=| ¢| | a| sin{z — B)
= besindA=casinB = bsind=ggink
.4 )

ginB sin 4




Similarly, by taking cross product of (i) with b, we have
a ¢

S 7 o (iii)

gind sinC
From (ii} and (iii), we get 2 = b =-£
gind ginB gn(C

Ifu=2—j+k and v=4i+2 j—k, find by determinant formmla

D uxu (i) axy (i) vxu
i), E=2A-j+E and v=4i+2 -k
By determinant formula
i j k
) wuxu=2 -1 1/=0 (+ Two rows are same)
2 -1 1
i j k |
() wxv=12 -1 1|=(1-2)i~(2-49j+@+Dk=—i16j+8k
4 2 -1
i J &
(i) wxu=4 2 —1=(2-1)i-(4+2)j+(4—-4)k=i—6j-8k
2 -1 1

143.7 Real World Applications on Cross or Vector Product
(0) Area of Parallelogram
Suppose & and v are two non-zero vectors
and # is the angle between them, and
suppose that |§| and |g| represent the length
of the adjacent sides of & parallelogram, (see
figure). We know that:
Ares of parallelogram = Base * Height
 @use) ()~ |u{pfsing

. Area of parallelogram = |gxy\
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(b) Area of Triangle
From figure it is clear that

Area of triangle = % (Ares of parallelogram) ;

Area of triangle = %\gxﬂ ]

where u and v are vectors along two adjacent sides of the triangle.

Find erea of the parallelogram whose vertices are
F0,0,0), g-1,2,4), R(Z -1, 4) and (1, 1, 8).

Area of paraﬂelogram PO x PR

Where LPQl and |PR| are two adjacent sides of the parallelogram

PQ DQ OP= 1-0)%+(2-0)] +{4-0k=—i -2)+4k
PR=GR—OP=(2—0};+(—1—0)£+(4—D)£=2;—i+4,1:

i jk

Now POxPR=|-1 2 4=(8+4)i<(4-8)j+(1-4k
2 -1 4
—12+12j-3k

—_— —
+ Area of parallclogram = |PQ x PR)= [12i+12, —3k|

_ = v/144+144 +9 = /297 square units
Find the area of the triangle with vertices 4(1,—1,1), B(2,1, ~1)and
C(—1,1,2). Also find a umit vector perpendicular to the plane of triangle ABC.
AB =0B—0Ad =2~ 1)i+(1+1)] + (- Dk=i +2j-2k
AC=0C—0A=(1-Di+(1+1)j +@- Dk=—24+2j+k

i J k

—_— — T £ R

ABxAC=|1 2 -2|=Q2+)i—(-4)j+(2+4k=6I+3j+6k
-2 2 1

The area of the parallelogram with sdjacent sides [4B| and [4C| and is given by
— —>
|[ABx AC|=[6i+3)+6k|=+/36+9+36 =JR1=9
Ares of mangle = %|Ex.4_c‘:| —1|ﬁi+3j+ﬁk|=%squam unity

AumtvectorJ_totheplaneABC—M 16: 35 +6k)=—(2g‘+j+2k)

4Bx AC| 9°
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{c) Moment i’, Force
Let a force F(FP()) act at a point P, as shown in the figure, The
moment of F about O

—_—
= Product of force F and the perpendicular distance ON in the
di:ectionofn

= (PQ)(ON}(;) (PYOP) 5in 8 (a)
~OPxPO=pxF

Find the moment about the point M (2, 4, ~6) of the force represented
by..iﬂ' whﬂecoordmatesofpomtsdandﬂm(l 2, —3) and (3, —4, 2) respectively,

AB OB OA (3—-Di+{—4- 2)_;+(2+3)Ic _f€£.+5£
M.i=(1+2);+(2—4)£+(—3+6)§=3;—2i+3§
Moment of AR sbout M{(—2, 4, —6) =r X E=_EE-:¢I§

Pk
=3 2 3
W2 6 5
= (-10+18)i-(15-6)/+ (—18+4)k
=8i—9,j-14k
Magnitude of the moment =./(8)" +(-9)* +(-14)* =341
\|F EXERCISE 14.3

1. Computy them product gxb and bxg. Check your answer by showing that
each w Afid b are perpendicular to axb and bxa.

@ a=2+j-k,b=i-j+k () a=i+3j+2k b=2i-j+k
(i) g=2-2j+k , b=—i+j+3k (v) a=—4i+j-2k b=2i+j+k
Al

2. Find a unit vector perpendicular to the plane containing @ and 5.
of the angle between them:

() a=it+6j-3k, b=2i+jBk (i) a=—i—j-k b=2-3j+4k
(i) ga=i+j+k, b=i-j-k (iv) a=5i+j-3k b=—2i+4j+k




10.

11.
12

15.

14.

} &

16.

Find the area of the riangle, formed by the points P, Q and R,

@ P23,5;0(,2,0;R4,1,2 @ A00,1);002,-1,2);R-L32)

Find the arca of a parallelogram, whose vertices are:

i) A4(1,1,1);584.2,3); ((5,6,7).D2,3,5)

(i) 4(4,5,6);B8(1,3,2); C(2,0,1);0(1,2,5)

If the cross product of the vectors u=7i—4j+5kand v=ai-5bj+3k is zero,

then find the values of ¢ and b. L

Which vectors, if any, are perpendicular or paraliel 0(3\
w=51—j+k;v=j-5k;w=-15i+3;-3k

(@) w=Si-j+kv=j J g::)

Umﬂmdcﬁniﬁunufcmsspmdmthawmo?mzmandwﬂartmthﬂ
() wx-w=0 (ii) g{gw yXu

(i) wx (Fv)=(hu)x v="hiuxv) (p,v} $<(1'+_} (uxv) + (@x w)

Prove that: ax (b+c _}--bx(c_:+a)\ @’+z_,) 0.

If g+ &+ ¢=0 , then prove . b=bxc=cxa

Prove that: sin(a—f)= sm\amﬁ+msamn,&

Show that |gxb| éﬁﬂ —{ e b]
Use the defini cross product, prove that for any vectors x and v
(2 + V)% (—4) = —2uxv) .

Find \momentabuutthepomtjﬂl & 3)ofthefoercerepresentedbyd.ﬂ
where the coordinates of points A(4, 3, —1) and B(—1, 3, 7) are given.

A foree F=6;‘+4j—4£ is applied at the point 4(1,—12). Find the moment of
the force about the point B(3,—2.3).

Give a force F=2i+ j—3k acting at a point 4(1,—2,1). Find the moment of:'t'"
about the point B(2, 0,—2).

A foree F=—2i+ j—3k is applied at P(~1,-3, 2). Find its moment about the
point (X4, 2, 2),
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14,4 Scalar Triple Product
The scalar triple product is a key concept in vector caleulus with wide-ranging
applications covering various fields., In three-dimensicnal space, it provides a
significant role in calenlating the volume of geometric shapes such as parallelepipeds
and tetrahedrons, defined by three vectors, which we will learn later in this chapter.
Additionally, it plays as a vifal tool for determining the coplanarity of vectors,
providing a condition to verify whether three vectors lie within the same plane.
There are two types of triple product of vectors:

(8) Scalar Triple Product: u- (v * w)

(b) Vector Triple Product: ux(yx w)
In this section we shall study the scalar triple product only.
Let u, v and w be three non-zero vectors
The scaler triple product of vector u, v and w is defined by

u-(vxw) or wv-(wxu) or w-(uxy)
The scalar triple product u- (vxw) is written as
e (v wy=[u v ]

14.4.1 The Volume of the Parallelepiped
The triple scalar product (g % V) - w

represents the volume of the parallelepiped =
having &, v and w as its conterminous edges.
As it ig seen from the formula that: s 2
x vpw=luxv||wicos® o S s
Hense, (), (@X|=area of the e

parallelogram with two adjacent sides ¢ and v.
(ii) |w|cos 6= height of the parallelepiped
(e x V) w=|uxv|| w|oos 8 =(Area of Parallclogram) (height)

= Vohime of the parallelepiped

Similarly, be taking the base plane formed by v and w, we have

The volume of the parallelepiped = (v X w) - &
And by taking the base plang formed by w and ¥, we have
The volume of the parallelepiped = (w X %) v
So, wehave: (ux¥) - w=(@E*w) - u=(wxu)-»




14.4.2 The Volume of the Tetrahedron
Volume of the tetrahedron ABCD =% (arca of AABC)(height
of D above the place ABC)

(Area of parallelogram with AR and AC as adjacent sides) (/)

Rl | Oy |

(Velume of the parallelepiped with g, v, w as edges)

e negative sign if

ag
Thus, volume of tetrahedron = % >y w= % [y W] | (wxp) wis negative.

14.4.3 Scalar Triple Product of Vectors in Terms of Components
Let u=aithj+tok, v=ai+h j+c,kand weai+h j+ck
i j &k |
Now, vxw=la, b ¢
a by ¢
= vx w=(be,~bg)i=(a,0,-a,c,)j +{@h - ab)k
u.(vx W) = o (b -be)-b(a0 - a0 )+ alah —ah)
o b g
= wxwW=a b q
o & b g
Which is called the determinant formula for scalar triple product of u, ¥ and w in

Prove that dot and cross product are interchangeable in scalar triple
product.
EFIETY, Consider ¥=ai+hjtokv=ai+hj+ek and w=ai+hj+ck
are the arbitrary vectors.
The determinant formula for scalar triple product of vectors g, v and w is given by:
% B g
u-(vxw=a, b ¢
a b q
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a b o

=-|a b ¢| Interchanging R,andR,
a b ¢

Interchanging R, andR,

[
N
o
S

=w-@xy)=uxy-w (v a-b=b-a
Hence, u- (vx w)=(uxy) w
Thus, the position of dot and cross can be interchanged in scalar triple product.
T TI024) Assuming i, j and k are unit vectors in & cartesian coordinate system.
Prove that I jXx k= j.kxi=k-ix.j
Giveni,iandﬁmlmitvector,
So, we can write i=i+0j+ 0k j=0i + j+0k k=0i+ 0j+kthen determinant
formforscalaru'ipleprodmtofunitwcm;,jandkcmhewrittenas:

100
i.jxk=0 1 0=1("0)—00—1)+0{0-0)=1
00 1
010 | 00 1
j.Exi=[0 0 L=0(0-0)-10-1)+0(0-0)=land k.ix j=|l 0 0|=1
1 00 010

Therefore £ j% E= j. kx =k .ix j

Find the volume of the parallelepiped determined by
u=i+2j-k v=i-2j+3k w=i-7j-4k

1. 2 -1
Solution’ Volume of the parallelepiped = #.vx w=|l -2 3
1 =7 4
=  Volume = 1{(8+21) - 2(-4-3)-1(-7+2)=29+ 14 +5

= 48 cubic units
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Find the volume of the tetrahedron whose vertices are A(2, 1, 8),

B(3,2,9), C(2, 1, 4) and D(3, 3, 0).

XN\ 48 = OB — 04 = (3- i+ @2-1)j+(O-B)k =i+ j+k
=0;

AC=0C-0A=(2-Di+(-Dj+(@-Bk  =0i-0j-4k
AD=0D— 0d= (+3—2);'+(3—1)ii+ (0-8)k =i+ zi_gj_;

1 —_— e —p
Volume of the tetrahedron = E[AJ!':‘ AC AD]

11 1

=% 00 —4 =;—[1(0+3)—1(o+4)+.1__(0-—ﬂj]
1 2 -8

=1[8—4]=E=Embiclmim

6 6 3

14,44 Coplansr Vectors and Condition for Cpplanarity of Three Veciors
Vectars are coplanar if they lie in the same plane or can be
combined in the same plane.
Consider the three coplanar vectors y, v and win & plane as
shown in & figure, -'
The cross product vx w gives a vector that is perpendicular
to both the vectors vand w, As wvand ware coplaner, so
vx wis also perpendicularto y
Thus, the dot product of u'and vxw is zero. Le.,
# (wxw)=0" - If vectars g and b are perpndicular then g-5=0
Thus, we conclude. that if the three vectors u, v end w 8re coplanar then their scalar
triple proguct is Zeto.
Properties of Scalar Triple Prodoet
1. If &, v and w are coplanar, then the volume of the parallelepiped so formed is zero
that is (& * ¥) - w =0 and hence the vectors u, v, w are coplanar ¢ (g %X v)- w=10
2. If any two vectors of scalar triple product are equal, then its value is zero ie.,
[egw]=[uyyv]=[uww]=0

1EeT 027 Prove that four points
A(-3,5,—4), B(-1,1, 1), C(-1, 2, 2) and IX=3, 4, —5) are coplanar,

—_— —p —
Proof: AB=0B-04 = (-1+3)i+(1-5)j+(1+4Dk =2-4j+5k

—_— — —b

AC=0C 04 = (—1+)i+(2-5)j+ 2+ )k =21-3j+ 6k

—_— — —p
AD=0D-04= (3+2)i+(4-5)j+ (5+Dk =0i— j—k=—j—k




o> st (L

— —
Volume of the parallelepiped formed A8, ACand.AD:s
2 4 5
— — —p
[AB AC AD] =2 -3 6|=2(3+6)+4-2-0)+5(-2-0)
0 -1 -l
=18—-8-10
=0

As the volume is zero, so the points 4, B, C and D are coplaner.

BriT28| Find the value of @, go that @i+ j, i+ j+3k and 28+ j—2k are
coplanar,

CIOTT, Let » = @i+ j+0k , v=i+j+3k and w= j 2k be three pgiven

vectors, Scalar triple product of given vectors is

e 1 0
myw] =1 1 3
21 -2
= a(-2—-3)-1{(-2—-6)+0(1—2).
=—5a+8
The vectors will be coplanar if -S¢+8=0 = a=§

14.4.5 Applications @f Vectors in Real World

A plumber exerts a force of 30
pounds along the negative y-axis on a lever Torque quentifics the
: : A rotational offisct of a fors i un o}

mnnm.:ted toammhinc The pivot peint of th'e m‘mmnhmhm
levm: is attheMIgm (0, 0, 0), and the fnrce.m fio vt et F o polilon veilke: £
applied at thepoint (1.2 f, 0.5 1, 0 ). Delermine ¢y sxenis fom o pivet it ® the
the torque produced by this force about the pivot ~ pohitswhem the farce Is appliad) and the force
point. veetr I itaclf, e
[FIITTE The position vector » from the origin g
t0 the point (1.2, 0.5, 0) is given by
r=12i+0.5j+0k

The force Fisexermddownwardalongnsgaﬁve
y-axis with a magnitnde of 30 pounds is
F =0i-30j +0k




Torgue T produced by the force = rx F
Using determinant formula of cross product

i j ok

=12 05 o

0 30 0

= 0i—0j—36k
£ = —36k pound-feet

Thus, the torque is 36 feet-pounds in the negative z-direction

T E36| During & building construction, & crane exerts a force to pull a concrete
block, represented by the vector F = [4500, 3300, 2140] Newton. Each component
corresponds to the force exerted along the x, y, and z axes, mpecﬁvely. ‘What is the
magnitude of this force?

Using the formula for the magnitude of a véctor in three-dimensional space

F|=yF 42
= /45007 + 33007 +2140°
=/20250000-+10890000 + 4579600
=+/35719600,

= 5976.59

The magnitude of the ﬁmm‘: exeried by the crane is approximately 5976.59 Newton,
The. components of #=300i + 250, +180k represent the respective
number of J&ckem, shoes, and handbagsgold st a store. The components of
v=3500; + 4200 + 6840k represent the respective prices (in rupees) per unit for
each product. Find ». v and explain what the result tells ug in real life.
EXTTTEETA, The dot product of 1 and y =u-v

=(3001 + 250/ +180k): (3500i + 4200 + 6840k)

= 1,050,000 + 1,050,000 + 1,231,200

=3,331,200
The result x- v= 3,331,200 tellz us that total revenue generated from selling all the
three product is Rs. 3,331,200.
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P EXERCISE 14.4 4
Find the velume of parallelepiped for which the given vectors are three edges
(0 wu=3i+2k; v=i+2j+k; w=—j+dk
() w=i-4j-k v=i-j-2k; w=2-3j+k
i w=j+k

ol
“
=]
]
“
I
i,
+
L
L~

Prove that the vectors i—2j+3k, —2i+3j—4k and g‘—3}+@(;remplmar.
Find&ecmsﬁntasuch&gl&evechmmwphw. .,WSO
() i-j+k, i-2j-3kand 3i-aj+5k /\Q‘;.'
() i-2aj-k, i-2j+2kand @i-2j+k .
Prove thet the points whose pas%cﬁh ectors  are A(-6i+3j+ 2k),
B(3i—-2j+4k), C(5i+7j+3k), D(—ngiI‘-‘y_—l_c) are coplanar.
(a) Find the value of : O

O 22k @ ki @) [Eif] @ (i)
(b) Prove that u- (vx w)+y- (W) + w (uxv) = 3w (vx W)

Find volume of ith the vertices

ﬁ) (0! 1!2)3 (3! 25}}! (1: 2: 1) and (5, 5! 6)

i ,1,8) '2,9), (2,1,4) and (3,3,10)

Frove that the whose position vectors are A(3i+2j—Fk), B(i—-2j-+k),

C(6i+ 4*@, D(9i+6j—3k) are coplanar.
vae@for any three non-zero vector ¥, vand w

@+¥) [ (+wx (w+u)]=2[u v w|
Comsider a parallelepiped determined by the vector ¥ = 2i+ 47 -3k,
v=>5i—3;+6k and w=4i-7j—2k. If the base of the parallelepiped is
define by the vectors u and y then find the height of the parallelepiped.
A mechanic applies a force of 50 pounds along the positive x-axis on a wrench
connected to a bolt, The pivot point of the wrench is at the origin (0, ¢, 0), and

the force i applied st the peint (0 ft, 2 ft, 3 ft). Determine the torque produced
by this force sbout the pivot point
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A drone flies from point (1, 2, 5) to point (4, 6, 9), with each unit representing a
meter. What i8 the magnitude of the displacement the drone experienced during
this flight?

The vector u=350{+757+65k shows how meny belis, pants, and shirts were
seld al & store. The vector w=1500i +3500 + 3000k shows the price (in rupees)
of each item, Find u- w and explain what the result tells us in real life,

A force F= (20,10, 30)N is applied at a point P(2, —1, 4) in 3D space. The
pivot point is at M(1, 2, —3). Calculate the torque produced by His' force about
the pivot point M.

An electric shop sells thres types of sppliances: Fans, H_@ and Ovens. The
monthly sales quantities are 500 units of Fans, 300 gg@ Heaters and 200 units
of Ovens. The profit per unit for each appliance is Kb 500 for Fans, Rs 400 for
Heaters, and Rs 2,000 for Ovens. 0%2*

(a) Represent the monthly sales qmﬂﬁ EE the profit per unit a5 vectors.
(b) Caleulate the total monthly profit using vector operations,

R

S

O
&
\\@

Q\S)
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{i)[;‘—;%] @(2E way 20 Z-He 2k

(i) +— (1)ﬁ”7f 5. 0.8y 5 @) il ) VI (i) V34

25 13 13
(iv) ION‘I_ 8. 2

V EXERCISE12 J
) x=-19,y=22 (i) x=9,y=6 (i)x=—1l,y=28 2. ‘z=14,y=9
@ x=35, y=25 wx=-35, p=-25 @ x=62, p=NZ ox +=-6:2, y=-22

(i) * =046, y=0.95 or x=-046,y=-095 4 tz=—; 5 x=8y=3 a=2,b=1

(@ I-—dior-3+48 (i) I—for-3+1 (i) 243 =3810r-243 +3.f31 (iv) 12+ Sior—12 54
-57 ) 5

:(5—2@) 9, x=%,y e M=—tp=" 1l a=—Kv=13 12 a=7

V EXERCISE13 J

- () (e+2bNa—i2B (i) (3a+ilB)(32 —i4B) (i) 3(x+)(x —) (V)9(4x+5y)(4x ~iSy)

) (z—Nz—7) (vi}l{z__-r—._;’g_—'ﬂ)(z+3+2a‘} (i) (z+2—){z+ 2¢4)

(vii) z(z_”;?"-][z “;3’]

M {z+2}(ﬂr—1+hﬁ)(z—1 w'_) {ii) (z+3)[ —§+£I : @]
(@) (z-2)(z—M){z+4) @) (z-2)(z+2)(z-5)(z+5)

) (z—2)(z+2)(z—2)(z+2) (v}  (z2+1{z-1){z+2i){z—2i)
("ﬁ}(’_@)(’+@)(5—ﬁi)(z+q’§i) (viil) (== 9)z +9¥==TiN=+T7i)

Roots: 3, 3,4}, 41 Linsaractrs (z+3)(z-3)(z+ #)(z—41) 4. @@ z= 250D

(i) =3+ &/21 (iii) z—3t?‘ () z=—2+3i () z=—%:t%i (vi) z _s;th_g:

) 2,-2,24,-2 () 0,3,-3,3,-3% @) 0,1,-L,4+ (v 50

{"’) 'Jis _ﬁs ?:_@ (\'1) —1, i

2
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6 x=-224+62-8z424 T. x=10z'+302—40 B x= —3z*+62" +422* —06z+96

¥V EXERCISE 1.4 J

1. 9 {22020 i) {2,-2o,-2a} iii) {3,-3a-3a} V) {4 40,40}
V) {5, -Se,—S5a8) 2 O 2,-2,2,-2i (i) 3,-3,3 ¥
Gi) 5,-535, -5 4 @ -1 G 32 7 0

¥V EXERCISE 15 J
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1.

D 5(cos36.87 +isin3687) iD -Ji[coa%+isin£]_ iif) 1-[m§+fmi]

¥y
W

e
z

4 3

w fmiom) o s{={ 53]

v) 1-(@!![—%]”“[-’%)] (vi) 1_[@“[#,1%},,-&(@4%))

@ 2-28 @) —%—%i (i) 676181  (iv) —10.62-2.85

) 086432l (vi) 1.68-1.09 4. () —3.86-2.0% (ii) —8.86-10.69

. 19 . 19 - 1l . 1lx
(i) 4S[MEH!m_1T] (iv) s[m 12 +isin 12}

() —3.86+1.08i (i) 17.38—4.65 (i) —6668+3851 (i) —%+m
2cosl20 +7ain120°), —1+iy3 8 10(cos150 +isinl50),, —5/3 +51

|z|=2ﬁ.atg{z}=%+2m 0. y=Er-2541 13 y=—=x 14, y=—;x—%

1 F "
=— +_ l w l .l. ] l — = i T
y=—x 3 7 8 Zﬂ(mlz unnu]

Rectangular form: 2+ 14, Polar From: 10v2{cos81.87 +1sin81.87 )
¥V EXERCISE2.1 4

@ O 8 (-1 i) *—4x+3 iv) x*+6x°+8

moHV-3 a3 i) v2r—1 @) V2549
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. @ 4 @ Ems[a+£}iﬂ(g] Gk +3ah+ h+32 *+ 20

k 2
ginh P
3 A=" C=2Jx4 S=6V""
69 heosacos{a+ h) ® 16 ®) * ()

4. (@ Domaing =(—0,x),Range g=(—0,)
(i) Domain g =[-2,00),Range g=[0,)
(i) Domain g = (—o0,00), Range g = (—0,10)
(W) Dmg == (_m#m)lRﬂnEB E= [ﬂ,m)
(v) Domaing= R—{3} Rangeg=R—{-1}
5. a=2,b=-22
6 @ (@ 30m @ 17.5m © 11m (i) x=2sec
7. @ Domain f=(—=,cc),Range f=(—o0,)
@) Yes, the fnction is one-to-ane, because cqual gufpats implics equal inputs.
(iil) Yes, the fmnetion is onto when the codomain ig all real mumbers,

8. () Domain f= R—{-1},Range f = R~ {2}
(ii) f(x)is not onto.
10, gix) is surjective.
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(0 Minimumvalucatx=—3i54 (i) Minimum valoe st x=—2is—4

(i) Mixinmmn valieabg 4529 (%) Maximmm vlise st x = '?3 & 'T”

(v) Minimnm valieatx= —1is—16 (vi) Mm:innnnvalunatx=i is %

(i) Minirwom value a1 x =2 is —4; Domain f= (—o, w); Range f= [ 4, )

(i) Minimum valoe st x = % is _Tl:Domninf=(—w,uo);nguf= [_TI,WJ
(iii) Maximum value at x = 1 is — 7; Domain f= (0, oo); Range f= (o~ 7]

(iv) Minimum vatue gt x =2 is 0; Domain f= (-0, oo); Range /= [(,00)

{(¥) Minimum value at x= - 1 is—9.3; Domain f= {0, oc}; Range = [~ 9.3.x)
E]
4

{vi) Maximum value &t x = _Tl is %;Dmuinf- {00, @); Renge f=(—mx,

@ £ )= vx+3 ; Domainf!=[-3, «); Range f = (~wo,0]
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(i /'@ =—3—+5+x ; Domain /1= (-5, «); Range /= (- 3, )
4+.2 3+
(i) )= g ; Domain f~'=[-3, w}; Range f~'=[2, )

@@= 2TV pmain 1= [71, o) Range £ =[5, )

3
® £ '.*,+1’J"'T‘l : Domain /= [1, ); Range /=3, =)

(7469 = —4— |- Domain= -8 Renge 1= 4]
4,
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1 1 1 3 24 30
+ + 81+ - +
x-1 x-2 x-3 x4 x-3 x-6
a + b & c
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2 1 1 1
5y  IL- + + .
(-1 4x+1). 4(x-1) 2(x-1)

1
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x—1

3 10 2 1 1 1 1
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2 2 1 g 3 3
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x+l x-1 (=17 x—2 x+2

V EXERCISE5S.2 J
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¥ EXERCISES3 J
L@ 1-Sr+ 2 AT i validif < 1
(ﬁ)z_%__%_%’— invaldif o)< (D124 2026 +...lovalidif [ <1

(if) 1 —x+ 22— 2 + o+ g valid if || < 1
(iv}l+2.r+%f+2r"+---iuvalidif|1‘|{_j% 2, @1yrx2a (Ddn 6 %

b
F EXERCISES4 J

L (09950 (i)1.010 (@)0331 (v)0935 2. Remainder=1 3. Remainder=1
4. (D219>190420"°  (§315>2094+30' 6§ Romainder=3 7. 6
1Z. Rs. 12,616,000 13, Rs.2,928200 14, 28 matches

V EXERCISES.1 J

1. () Quotiermt=3x+2,Remainder=4 (i) Quotient=3*+ 14x+ 25, Remainder = 54




== <> rensces (L

(iif) Quotient = x* +x* — 2x+ 1, Remainder = 18 (iv) Quotient = 5x*—3x— 18,
Remeinder = 12x+ 71 {v) Quotiemt =32+ 4x—3, Remzinder=-25x+9 2. (i) 20
(i) 10 i) 5 (iv) 91 (v) 10 3. () x+1lisafactorofs®—1

(i) x—2isafctorof ¥ -Sx+6 (i) x+lisnctafectosof®+x*+x-3

(ivi x-2isafactorofx+x22-7xr+2 (v} x-3isnotafoctorofat—32+x22—r+1
i (x—2Xx— 1 x+3) () +4(x—6)x+2) (i) c—2Ax+3Nx+ 13 {2x+3)
Quotient =x* - 37 —x+ |, Remainder =1 6, p=2,¢=-1 7. k=1 & k=8

"

5 p _—s,q — 10. a=-8,b=-16

2 2
V' EXERCISE9.2 J

1. 2625% 2 20wnits,2unitk 3. z=2,—1 4 z=-2,—1 5 z=—05,1
6 z=—0.5,0.8, the system is stable. 7. z=—0.5,—0.7, the system is gtable.

¥V EXERCISE 10.1 J

L. ® —% @1 @2 w2z W % (i) '?'z. (i) —con 12° (i) —sin 12°

(iii) cos27" (iv)tan33° (v) sin 15" (vi) — sin 39° (vii) —cot33" (viil) —sin21° (ix) — sin 30°

¥ _EXERCISE102 J

1@ 423_\'_51 i) “Ej—; G 2—v3 () ‘% W) ‘—;‘rzﬁ i) 243
T "R R AN "R
0 e @ e @) @) g O g 0D

The: termitia] sy of angles of measure and e+ £ and e— Fare in 1T and 11 quadrania
regpectively,
16 (i) D = {il) _E,E 15. (i) 25sin(f +§},m§=l (i) 13 sin (&— @),
65°° 65 Y7 435" 475 24 ¥

Eng = % i) V2 ein(@—¢), g =1 @) 10sn(@—g) tng =%
) Lsin(@+g)mp =43 (v S5uin®-¢),tan =~

¥ EXERCISE 103 J

7 7 24 24 7 24
L (@yein2a=— ,c082c =— ,tan2ag=— (i) sin 2= — ,co8 2= — ,tan 2g= —
25 25 7 25 25

3—dcos 20+ con 48 -1 Ji0+245

4, wn'g= 22 8"“” 5 () sin13°=‘ET, con 18° = :J‘
J10-245 J10-25
(i) sn36° = J_,m35==£+1 iy sin =‘E+l,ms4°=—‘r

4 4 4 4




I <> mamenaces (1 0
V104245 J5-1
4

(iv) gin 72% = .WEW‘T

¥ EXERCISE 104 J

1 () sindg+sin2¢ (i)sinBH—win2d (i) %(sin’?ﬂ+uin3€j (iv) cos 50— cos 5@

(v) 3 (oin2x—in25) (vi) 5 (oos dx -+ cow 60) (vii) & foos 34° — cos SW°) (vilD (008 90°— cos 21)

2. () 2sindfcosd (i) Zcos60sin28 (i) 2005%“%& (v) ~2sin40sin 39

(v} 2co830°cos 18" (vi) 2sinxcos3f®

F _EXERCISE 111 J

I, () evem (ii) neitherevennorodd (i) even (iv)oeitherevennooredd (v) odd
o) otd (i) even i) even 2. @ = i) Z @)L @20 ) 40 (D) 5w

o) i) 2 () 30 () o) 30w

F EXERCISE11.2




(iv)

e e . e e e e

S e T

oD

IS ———

-

)

- - R -
L T L L]

R, =4

y=tin 5z



2 P A
19 1
(v) Max=4, Min=—2 (vi) Max=3, Min=—1 (vii) Mn-%,Min-% (vii) Mu-%, Min=
(ix) M'n-l.M.in- 1 2. (8) Max. temperature = 21.5 °C, Min. temperature = 8.5 °C

2 8
{b) Temperature at 9 a.m,=8,89°C 3. distance=36.78m 4. height=130.92m

@ ﬁ{t)=—30m(%r]+35 (D) 66 feet (c) 6322feet 6. (1) 27m () O3m
© %mond (@ 0.05second 7. (8) in(¢)'=2&—20m(%r) (b) 28 foet
(©) 3I7875and82.13s B (2) 6607TF (b) l4hr orZ2pm (c) RRF

. () 65000 (b) 30000

F EXERCISE 12.1 J

L) 2 (D O (i) divergent (i\r}% L@ 10 G)S Giys GO @0

(i) % i@ 2 (ﬁ)% (i) —12(v) 0 () 0 (vi)—4 (vil) 2

b -2

(vil) ;j; (ix) 5«“‘ 4 @ 5 (@) % G o @ V2w

2

- : - 3 ,
oG 2 ()2 (i) g () 2 (x) 6-log3 (xi) 2log2
] p—
M & @ e (i) % v) & (V) & (vi) & (vi)e® (viiD) %
1
(ix) . -1 (x) 1 &) &

¥ EXERCISE 12.2 J

1. () —2 (i) 0 o 2. (i) fis continuous at x = 2 (ii) f'is discontinuous at x = 1




= o> mnemscs G
3. (i) fiscontinuons atx=2 (ii) fis discomtinnons atx=-2 4. c=-1

E (D m=1Ln=3 (i) m=4 6 k=% 7. f{x)is discontimeous at x=1.

V' EXERCISE 123 4

. 0 2 100000 3 500 4 (@10 GO 5 @) o (@844
& yes 7. ) 16.18% (i) 13499 8. yes

¥V EXERCISE 13.1
1. (D4x (ﬁ)% {iii}—%;l:_m(iv)lx—B 2 (i)q:ﬁ('ﬁ}—”—;am 3. (1}';' (ii) 2x+ 2

4. (i}(g;_ﬁz}s (@ 10(2t+3)* (i) Talaw+b) 5 B y=8x+13 6 y=TxrH4

7. {L,0,y=x-1 & 8 9% % Jp=x+9 10. (i) 28km/k’ (i) 13 kmih
11. 0 12. 8°c/kr 13. ()not differentisble (i) notdifferentiable

P EXERCISE13.2 J

1. (D&d+62+% ("ﬂ':’(%erLﬂ)ﬁﬁlEiT)‘ (iv}%x () 1 =242+ 92

(v 3-2x {vii) E‘—H’z—]"; i 1)5_ 2 (vii) —w_ﬂ)z (ix) —(,f : ﬁm

) —a () —2x % o250 - t2 £-3¢+3x-1
‘\ia—x(a+x)m ‘\l‘___iz'f"l(xz—l}m T Ak aE-1pP T a3 -anp

¥ EXERCISE 13.3 J
1. v=15f—6t+1 - 2 Maximum Stress = 100, Rats of change =0

3. (DPE)=-10F+700x-2000 (H)Rs.400 4. (2940 (i) 27440
5. (@) 152mis (i) %6mi 6. (@) 72wk (@) 12k 7. 292Pa/m N 191686.6 units/ne

V' EXERCISE 14.1 4

1. ®i-9F @131-2j-2k G@Gi)y273 2 @ 7;%,'—:,2.2 (i) 6: '?%%
-3 4 1+4/17 1 4 8 174-12j- 16%
5 ., 20 . 5 , .- 7 . .7 .. 7 N 2.4, 4
‘\- (i)ﬁ l+€ﬁj— Zﬁ_k (]1) 'Ji_.!'l'\“ij'i'.di_i 741 3.}' 5 9. (ﬂ) 3_1 31+3
2. 4. 4 si 10f 15k 3 1
ked3 itgj—3 &k (B) a=-3 () =45 () a="g5.b=5




== o> m-

?
1Z, Only the triple (iif) 45°, 60°, 60° satisfies the condition for direction angles of a single vector.

F EXERCISE 142 4

Z =60 3 =%

-qI'I-n

10, 10179 kilometers  11. (i) —g%-% (i) %E —3[ (i)

~a|a«

2 -l
OE® on
4. (@ Projeciion of aaleng b: —%g :Hnjmﬁmnfénhlsg:—%f_r

(i) Projection of a slong b: %g; Projection of b akong gg 5 M3 @ Lo

6 20r-3 13, SGumiis 14, Runi 15 102umis 16 %Euuiu

¥V EXERCISE 143 J

L. @ gxb=-3]-3k;Lbxg=3/+3k (i) gxb=5i+3)-Tk; ;bxg=-5i-3]+7k
(i) axb=-71-7] ;dxag=7i+7] (iv) axb=31-6k ;bxa=-3i+6k

M9 NE e s JE o ik o
2 @ @ ,mﬂ-@ (ﬁ) ,d.?—s -me'm (it _\&.mﬂ' 3
13i+j+22k @ 3~ ﬂ

. el . .. 52 )
{iv) \’E‘I rain = s | 7 aguere units  (ii) 3 AqUACE ity

4 O VBisuemis @ VOuquemis 5 a=a b=

6. (i) Parullel vectors: g and 'w ; Perpendicular vectors: No
(ii) Parallsl vectors: & and w ; Perpendicular vectors: ¢ and v ; vand w
13, 487-47+30k id, —14j-14F

1% 3i+3/%3k 16. 154—15j—15%

PV EXERCISE 144 J

1. ()25 cublcunits (if) 14 cubjcunite (iii) 10 cubicunits 4. (i)

kol

(i) +1
@ @4 @3 G WO T @ 3wubicunits ()3 cubicunits

301
10 Ji6% 11. 150j— 10D k (in pound feet) 12, /41 meters

13. Rs. 532500, which iz the total revenne from the sales of all items.
14. -204+110/+50kNm 15 (a) [500,300,200], [S00,400,2000] (b) Rs. 770000




