Differentiation

The ancient Greeks knew the concepts of ares, volume, centroids etc. which are related
1o integral calculus. Later on, in the seventeenth century, Sir Isasac Newton, an English
mathematician (1642 — 1727) and Gottfried Whilhe G, W. Leibniz, a German
mathematician, (1646 — 1716} considered the problem of instantaneous rates of change.
They reached independently to the invention of differential calculus, After the
development of calculus, mathematics became a powerful tocl for dealing with rates
of change and describing the physical universe. 2

13.1 Tangent to a Curve at a Point i

Let Px, f(x)) and Ofx + &, f(x + &x)) be two Qi + 8, ffx + Bx))
points on arc A8 of graph of f defined by the -

equation y =#{x) as shown in Figure 13.1. A AT L

Where 8x is the increment in the value'of x (read ‘s
25 delta x) Oy’s M N

The line PQ iz secant of the curve ahd slope of Figu 1.1

secant line passing through P_(j‘;,ﬁx)) and ({x + 8x, fix + 8x)) is:
= RO = Jx+8x)—f(x) (1)

PR o
Where meecis slope of the sccant line, y
Revolving the secant line PO towards
P, some of 1t8 successive positions
PQ, PQ,, PQ,, ... arcshown in the
Figure 13.2. Points Q.(i=1 2, 3, ...}
m? getting closer and closer tn the ﬂ::; il
point P and PR are approaching .
ZET0

In other words, as &x — 0), the point O approaches P, and the secant line becomes
the tangent line. The revolving secant line becomes the tangent line 7 at P while 8x
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approaches zero, that is,

momLi JETEI@) g

where m,_ denotes the slope of tangent line. We see that m is the limit of m_ as O
approaches P along the curve y = f{x).

LETT M 1| Find the gradient and an equation of tangent line to the graph of
fix) =x*-2 at the point P(—1, ~1).
EITTTT To find the gradient or slope of the tangent line at point (~1,-1), putx = —1

in equation (2)
—Lim f(_1+ax)_f(_l) S W SN 17—
Hean = g0 8x e (2 | LS Liget
4 Jr"f{x_]"l’—-z
. (-1+8x)" -2-((-1)*-2) L I
o &x | “i%_ II'* 2 f“_J
_ g 1m B+ 8E -2-(1-2) L i p
e 0 Sx "-4'-'3-2"-‘1?' Y32 34
; | | H"“. | i |
g T 2eet o241 ISl I AEX
T B0 8 ey 8x - =3
—4|
=LimM=Lim(x—2+ﬁx)=—2 i
B30 Sx &0

Now to find the equation Q'Eﬁngent line we use the point slope form of equation of line
with slope =—2 and point{—1, —1)
y—(D=2(x~(D) = y+1=—2x-2
or y=—2x-3, which is the required equation of tangent line.
The graph of f and tangent line are shown in the above figure.
13.2 Derivative as the Limit of a Difference Quotient
Let f'be a real valued function continuous in the interval (x,x]);j)f(domainoff),
then difference quotient Sx)-f(x) &)
r—x
represents the average rate of change in the value of fwith respect to the change , —x
in the value of independent variable x.




If x, approaches to x, then LimJ ) —JS(¥)

R x—Xx

provided this limit exists, is called the instantaneous rate of change of fwith respect to
x and i written a8 f'(x).

If x, =x+8x i.e., x—x=4&,then the expression (i) can be expressed as

Fx+8x)—f(x) (ii)
A
and Ijmf(x"'a;z—f(x) (iii)

provided the limit exist, is defined to be the derivative off (ot differential coefficient
of f) with respect to x and is denoted by f'(x) (read as *f— prime of ™). The domain of
J' consists of all x for which the limit exists. If xe.D and f'(x) exists, then fis said to
be differentiable at x. The process of finding {15 called differentiation.
13.2.1 Derivative as the Rate of Clianpe of Velocity
The rate of change iz a fundamental concept in describing the motion of an object
moving in a giraight line. In physics; this is typically analyzed using position, velogity,
and acceleration, which are all related through derivatives (rates of change).
The position versus time graph provides a simple interpretation of the average velocity
over a given time interval.
Suppose a particle moves in a straight line and its position at time ¢ is given by the
function s(f). The average velocity over the interval from f to £ denoted by v, is
defined as:
s(8)—s(x :

Vo= (ﬁtl}_f( ) @)
Equation (i) also represents the slope of secant line passing through the points
(#.5(5)) and (¢, 5(z,)) . If the interval ¢ — ¢ is not small, this average velocity does not
acenrately represent the rate of change at time £.
To illystrate this, consider a particle whose position at time ¢ (in seconds) is given by a
function s(f) =¢2+ ¢ in metres. The average rate of change over various time intervals
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starting at ¢ = 3 seconds is shown in the table below:

-M-mmuu

Imterval t=3gecato =3 secs =3 gecsto =4 sece t=3 pocsto t=3.5secH
63

Average 3(5)—3(3)=30—12=9 3(4)—.9(3}=20—12=s 3(3'5}_3{3}_?—12_?5
velocty | 5_3 2 4-3 1 35-3 05

& i ,

Sﬂy ' [ [ &0

40 40

30 30

20 20

10 0

We observe that these values are not closely approximate the particle's velocity at
exactly 3 seconds. To obtain a better approximation of velocity at x = 3, we use smaller

intervals:

Interval Average velocily

2 TR T

oS el o (G +3H12_071_, .
31C3 0.1
Z =

=Y s =0l e | OMNA 12 0O
3.01-3 001

=3 acca o 3,001 socg | 1C00)"+3000-12_ 0007001 __
3.001-3 0,001

We see as the length of the time interval decreases, the average velocity becomes
instantaneous velocity af 1 = 3. Based on the trend, we estimate the instantanecus
velocity to be approximately 7 m/sec.

Thus, over a sufficiently small interval, the velocity changes negligibly. If ¢, is very
close to 4, the average velocity over ¢ —; approximates the instantaneous velocity at £,
As 1, approaches £, the everage velocity is called the ingtantaneous velocity.

This is similar to approximating the slope of a tangent line by calculating the slope of
8 gecant line. Mathematically, the instantaneous velocity denoted by vae 18 given by
the following limit:

v =Lim* =5 (provide the limit exist)
Al f—f

For convenient, if ; = ¢+5¢, then as 4, —¢ =5¢— 0, thus above equation becomes:

o };’.ﬂ 8 + 5;: —5(2) (i)
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In other words, the instantanecus velocity is the derivative of the position function 5(3)
with respect to time.
A particle moves along a line such that its position after ¢ hours is given
by: s(f) =42+ 21+ 1{(in miles)

(a) Find the average velocity over the interval [2, 5]

(b) Find the instantaneous velocity at £=13
EUTTTY, (=) given position function s(f)=4f +2¢+ 1, where 2<¢<5

The average velocity over the interval 2<7< 5 is:

{55 4(5)’+2(5)+1—[4(2)’ +2(2)+1]
S 5-2 3
_111-21_90

== = 30 miles/hax
3 3 cs/hours

(b) Instantaneous velocity can be found using the formula

Average velocity—v "

Instantanecus velocity = Y T+ 80 206D

B a8t
_A(3+80) +2(3+80)+1-[ 43)*+2(3)+1 ]|
=Lim -
&30 St
=Hm‘4(9+66t+5t‘)+6+2§t+1—43
o d &z
. 362451445 + 61 25¢1+1-43
=Lim
%30 5t
2
=Lim43+266t+4ﬁt —43= L].m2651+45f
B0 &t &+ D &
im0 ) i (26448)=26
&0 B &0

Thus, instantaneous velocity at =3 is 26 miles/hour
13.3 Process of Finding Derivative f(x) by Definition
12.3.1 Netation of Derivative
Several notations are used for derivatives. We have used the functions] symbol f'(x),
for the derivative of fat x. For the function y = f{x).
y+8y=/f(x+ &) (iv)




Dividing both the sides of (iv) by &x, we get

Sy _ fx+8x)—f(x) ™)
o it
Taking limit of both the sides of (v) a8 éx — 0, we have
Lim? = Lip/ FH1 ¥ /() (i)

W20y &0 &x
Lmsylsdenotedhy %, so (vi) is wﬁttenas _f'{x)

Re—=0 Jy

The symbol %iauaedfnrthcdm'iuﬁva nfywithreupacttub:jndhureitiﬂ

not a quotient of dy and di. zisa]sodmotedbyyﬁ ~

Now we write, in a fable the notations for derivative of y = f(r} used by different
mathematicians:

Name of mathematiclan | Lelbmiz | Newton | Lagrange Eunler
Notition used for deivaitive % & ‘:"—é rwery | 1@ D)
If we replacex+5:byxnndxbya,_ﬂlenthc expression f (x + &x) — f (x) becomes
JS(x)—f(a) and the change & in the independent variable, in this case, isx —a.

So, the expression J/ T 8%) 7500 50 wriston ag L)@ (vi)
& x—a

Taking the limit of hie expression (vii) when x — a, gives Lim? &2~ @ _ ()
X g x—0a

Here f"(4)is called the derivative or gradient of fatx =a.

13.3.2 Findmg /'(x) by Definition of Derivative

(Given a function f, then f (x) if it exists, can be found by the following four steps:

Stepl:  Findf(x + 8x)

Step Il:  Simplify /(x + &) —f(x)

Step TIT: Divide /(e + &x) — (3 by 8x to get f("”a;‘z‘f("‘) and simplify it.

Step IV: Find Limf(“a;:‘f(‘)

The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principle.
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Find the derivative of the following functions by definition
(@ fx)=c¢ b fe)=+

@ f)=c

) fixt+dx)=e

(i) fx+d)-Ax)=c—c=10

ap Sx+HE)-flx) 0 _

(i) 5 =0

: S L

(iv) Lim = = Lim(0) =0

B =0

Thus, £(x) = 0, that is, %@:n

(b) fEx)=x
@ f&+8x)=(G+a)y
(D) fle+8x)—Ax) = (x+ &) — 2% =27 -+ 2ol +(8x)? — x* =(2x+ 5x) &ix
iy SEH-S() @+, G Br20)
x 8x -

@) LimlEESE Limeaed a9=2:

ie., fix)=2x
Find the derivative of /x st x = a from first principle.

EXTETEA I f(x)=+/x , ihed
® f(x+5x)=Jx_+af and (i) fx+80)—fF(x)=x+r—+x
_ (o —fx)x+ -+ ) (mﬁcnalizingﬂle]
Jr+8c+/x numerator
x+dx—x
Jx+8x +vx
. &
ie, f(x+5r)—f(x)——m+ﬂ,; @
(iii) Dividing both sides of (1) by dx, we have
Slx+8)—f(x) _ i
8x Sr(v/x+dx +/x)

1
RN T P

(k= 0)
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(iv) Taking limit of both the sides as &x — 0, we have
. flx+d)—-f{x) _ .. 1
& dx _ﬂ[m+&)
1

ie., fo):J;iJ;:z:f; , (x>0) end f’(ﬂ)=m

Alternate method: Puttingx =gin f(x)=x, gives f(a) =Va
So, G- f@=vz-a

Using alternative form for the definition of the derivative, we have

JS(x)-f(a) _ Jx-e

xXx—a xX—a

_Wr-Aa)Eeda)
= i ida) (rationalizing the mmmerator)

x—a 1

T (-a)x+Va) Vx+a |
Taking limit of both the sides of (2) as x— g, gives

rea) @

. f@-f@) _,. 1¢ v 1
R xoa reyadde Ja+da
. 1
ie., f{a) = Z—J;

which is the gradient of fat x = a.
Example F]) @RI Y % at x=— 1 by ab-initio method,
X

ST, Here, y = ., s0 @
1 -
J‘+3y=m (ii)

Subtracting (i) from (ii), we get

1 ()
T x+8x) # P(x+Ex)’
_ {x+(x+8x)} {x—(x+8x)}

2 (xc+ &0)°

8y




_ (20 Ex)(-8x) _ —Ex(2x-+8x)
C Pa+i) Pl &)
Dividing both sides of (iii) by &x, we have

Sy —Sa(2x+&)  —(2x+8)
& P+l Flx+&)
Taking Limit as &x — 0, gives
Lie ¥ [ —(2%+88)
08y &0 x5 (1+8)°
)
*(x%)

gy o2 g W 2 2
e N = e

{Using quoticnt theorem of  limits)

The gradient of fai x =—1 ism = 2.
13.4 Derivation of x* where n€'Z
(2) We find the derivative of x* when # is positive integer.
(b)) Let y=2x". Then
y+8y =(x+8x)"
and By =(xtE) "
Using the binomial theorem, we have

Ey=[x" ol B+ "("7;)::'-’(5:)=+ +(ax)*]-x"

\L.e., 6y=ﬁx|:nx’"+"("—2_!1)x""- Sx+ - +(Er)"1] (i)
Dividing both wides of (1) tiv Bx; gives
gx—y= " +"(”—2'|Dx"—=- St e 4 (B (i)

Note that each term on the right hand side of (ii) involves 3x except the first term, so
taking the limit as &%U,we%%:m"‘l

Asy=x" g0 %(f):n «x"!




(b) Lety=x"where n is negative integer.
Let # =—m(m is a pogitive integer). Then

y=x" =$ (i)
1 -
and y+dy _(x+ax)' (ii)
Subtracting (i) from (ii), gives
iy — 1 1 o —(x+&"
T e 2~ 2 (x+E)"
PO —— ax+7'"("’2? D 2@y (5]
- )" '
(expanding (x + &x)™ by binomial theorem)
[m"‘l+mx!—35x+ "“'l'(&)"_l)
. 21 A
x"(x- &)™
md Yo L (m“ MED ez +(Ex)"'lJ
5  x"(x+8&x)" 21

Taking limit when &x —» 0, we get

b . 1 — - ™! (allferms contaning &x vanish)
dv x*-x _
= —m‘“- 1 . I-j'.'
- _m[-u)ll
ax ™ [ —m=n]
ff{'x}" = nxn—l
dx

So, we have proved that %(f)=nx"1, ifne?

The above rule also holds if n € 0-Z, i.e. for rational powers.
d 2 22 2
@)= =
dx 3 353
The proof of %(f):m'—l when pe  — Z is left as an exercise.

For example,
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13.5 Connection Between Derivatives and Continuity
Calculus is a powerful branch of mathematics that allows us to study change and
motion. Two of its foundational concepts of continuity and derivatives are deeply
connected. While each concept has its own definition and application, understanding
how they relate to each other in essential for solving resl-world problems in
mathematics,
As discussed in previous unils, 8 function is contiruous &t & point if its graph has no
breaks, jumps, or holes gt that point. On the other hand, the derivative of a function at
a point measures the instantaneous rate of change or squivalently, the slope of the
tangeiit line at that point. However, this definition depends on the function being well-
behaved around the point. This leads to a8 well-known result:
If a function is differentiable at a point, it must also be confinnous there. This means
that differentiability implies continuity, but the reverse is not necessarily true. For
example, consider the fumction fx)—1x| , clearly this fumection is continuous at x = O(see
Figure 13.3). Now we check the differentiability of f{ix)=Ix| atx=0.
Sx) =|x|
J0)=[0]=
f{0+ &) =[0+ 5xl || ™
so  f(0+&)-f(0)=|5|-0

and 4 O+8)—f(0) |8x|

&x B 4 x
| 8x| 2
Thus  f'(x)=Lim_s
Because |dx| = 8x when &x >0
and |ix] =—8r~ when8z<0, e i
8o, we consider one-sided limits
le@ leg—l and le|5x| Lml_ax —1
B—0" {x &0 fx -0 B Be—0" ax
This cighit homsidl el Lok ool Timits e mivt gl thewetone; the ]_mlzldnesnotmst
G-+

This implies that derivative of f at x = (t does not exist, and thus, there is no tangent
line to the graph of fat this point (see Figure 13.3). However, the derivative exists at
all other points of fi.e,, it is 1 on the right side and —1 on the left side. A function can
be continyous at a point but not necessarily differentigble thers.
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¥ EXERCISE 13.1 {4

Find by definition, the derivatives w.r.t. ‘x" of the following functions defined as:
@ 2°+1 @ 2-x (i) % (iv) x(x—3)
X

Find % from first principle and find gradient of the curve at the given point:

1) Jx+2atx= ii =

() x=6 [ ) 'J— ax=a \\
2 {;

(1) Find the derivative of x* atx= 8 from the first principie.

(ii) Find the derivative of x* + 2x+ 3 by definition.  ~ 1~

Find from first principle, the derivatives of the ﬁ}l]l:ﬁ;m% expressions w.r.L their

respective independent variables:

M (3:-2)° @ @+ ;iuf‘(awwf

Fmdl.hegadmntandequauonﬂﬁhetangmthnemy I —4x+latx=2

For the fimction f{x) = 2+, calculgfehs equation of the tangent line at x=—1.

Find the coordinstes of the poml: &ﬁngﬁncy and the equation of the tangent line

for fx) =x*-2x+l atx=1. '\.

Fmdthegmdwntof!hscme}'{:t) 3 +2ratx=1.

Find the gradient and m@luamn of langent line o the graph of f(x)= Jx at

x=9 { ("J

The position of & Jhcr t hours is given by: () = 2°-3¢ + 1 (in kilometres)

D Fmdthsa velocity over the interval [1, 4]

(ii) Find ;Eg,a:hsmmneous velocity at ¢ =2

A stnnq.ilﬂfnwupwards and its height after ¢ seconds is given by:

8(2) =16 + 32¢+ 10 (in feet), Find the instantaneous velocity at ¢ = |

The outdoor temperature (in °C) over time is modeled by: T =— 2 + 121+ 10,

where { is the time in hours, Find the instantancous rate of change at ¢ =2,

13.6 Theorems on Differentiation
We have, so far, proved the following two formulas:

1.

% () =0 that is, the derivative of a constant function i zero.

é(_f):n;"" , power formula (or rule) when n is any real number.




Now we will prove other important formulas (or rules) which are used to determine
derivatives of different functions efficiently. Henceforth, in all subsequent discussion,
1, 2, A etc, gll denote fimctions differentiable at x, unless stated otherwise.
3. Derivative of y = ¢f (x)
Proof: Lety =cf(x), Then
() ytdy=cflxtbtx)and
(i) y+8—y=cflxt &x)—cflx)
or By =c[ flxt &x)—f(x)] (Factoring out c)
(iiD) %’: cl:f(x‘|' ﬁx}—f(x)j|

&x
Taking limit when éx — 0 |
(iv) Eﬂ%=9ﬂ L f(x+52-f(x) . e%f(x+ﬁ:—f(x)

A constant factor can be taken out from a limit gigh:
Thus, & _ of'(2), thatis [ )] = o7(x) OF S [ W= e [f0)]

| 4 4

T 6| Calculate %(3;3) . 3%@: y (Using Formula 3)
4 44 2 .

Solution =3x 513 =4x3 (Using power rule)

4. Derivative of » sum ora difference of functions
If f and g are differentiable st x, then f+ g, f— g are also differentiable at x end

[+ 2] = £0)+£'(x), that is,%[f(xhg{x)] =£Lf(x)]+%[g(x}]

Also [ F()=g()] = £ (-g'ce), that is, 2 [F(x)- g @] =2 F @12 [e )]

dx dx dx

Proof: Letgé(x) =Ax) + glx). Then

(@) ¢br+dx) =flx+ &) +glx + &) and

(i) @l +8x) —$x) =S + &) +glx + &) — [Ax) + 2(x)]

=[f(x+ &) —f(x) +[glx + &x)—g(x)] (rearranging the terms)
i FEH)—$x) _ [+ f(x) glxt+8)—g(x)
dx & &x
Talding the limit when dx — 0




(v) Lim?®t®)$() =m[f<x+ax)—f(x) _g(x+80)g(®) ]
8 x—s

fx =0 By &x I dx
i EO)—f(x) . glx+bx)—g{x)
- &x Ha S

(The limit of a sum is the sum of the limits)

#'(x) =1"(x) + g'(x), thatis [(x) + g(x)]'=1"(x) + g' (x)
or LI f(+g0]= L/ [g()
The proof for the second part is similar.

Summmﬁermcafnrmﬂamhemmdedwﬁnddm@wofmmthm]
two functions

7| Find the derivative of y= %x‘ +§x3+%_.j:’+ 2x+5 wrt x

o |

Solution y=3x‘+3x3+lx’+2x+5
4" 3" T2
Differentiating with respect to x, we have
& _ 4[3 e x’+1x+5:| “'[Ex*j+i(3f)+i(lx=]+i(zx)+im
a4 %

de  dx de\ 3 de\ 2
(Usmgfnnnula-ﬂ-)
=%i(f)+§i(x’)+;i( )+2 (x)+0 (Using formula 3 and 1)
=%(4x"1)+§(3f"’1)+5(2x’")+2(1.x"1) (By power formula)
=3y +2___x-’45ﬁc+2

[T 001 8} Find the derivative of y = (2 + SY® + 7) with respect to x.
Soluﬂun y=Z+5)P+7)=x+5 + T2+ 35

leferenhahngmthrespecttnx,w:get

dy_d
- dr[xs+5x3+1f+35]

_d 5 4 .2 d :
_‘ﬁ(x 45— ()+T )+ —-(35)  (Using formulas3 and 4)

=5 453+ Tx2x* 40
=5x"+15x" +14x
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Find the derivative of y = (2 + 2){(x—x)

y=(2Jx +2)(x—x)
=2(x +1)- Vr(Vx - = 2Jx (W + Dx 1)

3 1
=2 (x—1)=2(x? —x7)
Differentiating with respect to x we have

b _ 4 - x]

dx  dx
—2[ x x |=2|= 2 21
3x-1
—3x1 x’ BJ_—— =
J_ J_

5. Derivative of a Product (The Product Rule)
If fand g are differentiable at x, then /g is.also differentiable at x and
[ )] =/ '()g) +f (x) 5'(x), that is

d _[d d
EU(x)g(x)] = [ &Lf(x)]] g(x) +f (x)[ dx[g(x)]]

Proof: Let ¢(x)=£(x)g(x). Then
(i) ¢x+&)=F(x+8x)glx + &x) and
() Plx+0x) = $(x) =S (e + &) ol + 8) (%) 26)
Subtracting and adding f(x) g(x + 8x) in step (ii), gives
lx + bx) — ¢x) = [ (x + 8x) gz + 8x) —f (x) glx + 8x) +F (x) glx + &x) — fAx)glx)
=[x+ &x) —f(x)] glx + &x) + (x) [ gl + &x) — glx}]
() KB SOy L0000

&x &x
Taking limit when &x — 0




<> Mt

(iv) Lim ¢(x + fix) 4 (x)
-0 o

o [ S8 £ glx+8) ()
~ | EH T, g0+ 1oy, SEHE)E)]

=Eﬂf(x+ ﬁ;’i‘f{x) .gjﬂg(x+&r}+£jﬂf(x}.£‘iﬂ glx+ E;i—g(x)

(Uging limit theorem)
Thus ¢ (x) = 7/(%) g(x) + £(2) £2) [Eﬂg(x+&’¢) =g<x)]

or %Lf(x)-g{xn=§U{x)]-g{x)+f(x)[%s{x)]

[Peru010] Find derivative of = (243 +2)(x —x) with respect to x.
y=(2J;+2){x—J;)

= 2(Vx + D(x—x)
Differentiating with respect to x, we get’

Q=z%[(~f§ +)r=x)

dx
= 'i,._r- Y =G AL
_2_[ ( .:+1)J(x )+Wx+1)—(x JJ_F)i|

=2 [lx;ﬁle(x—JI)HJEH)x [1—%;5"]]

\2

=2 !

2"

o2 (2
—2- J_ (‘J_ 1)[ -J_ J:|

Vr+2x-vr+24x]

JEy+HE+ D) x [1—#)]

=T[x_
3x-1
Jx
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6. Derivative of a Quotient (The Quotient Rule)

Iffand g are differentiable at x and g(x) # 0, for any ye IX(g) then 2. is differentinble
b4

atx and (f(")j . S (g()-f(x) g'x)
[e(x)T

g(x)
] [i Lf(x)] gx)— f(x) [ﬁlg(x)l]

that is i[f (")] _
dx| g(x) [e(x)]*

Proof:  Let g(x)= I 1hen
g(x)

. _ Sf{x+dx)
() #(x+&x)——g o i) and

o _ fe+tx) _ f(x) Sl Bx) g(x)— f(x) glx+8)
Al i g o0 50+ )
Subtracting and adding f{x) 2(x) in the numerator of step (i), gives
S 80—y = L B0) B S0 £(0)— 1(2) gla+B5)+ £(x) g(x)
g{x) g(x+ax)

[CF (et 8x)— f(x)g(x)— f{x) (gx+ tix)— g(x))]

1~
" g(x) glr+ &)
iy PE+ED—$() 1 [f(x+ &x)—f(x)
&x g(x) glx+8x) fix
Taking limit when &x — 0

(iv) Lim #(x+8x) 4 (x)
x>0 8ix

. I (fEEB—f) . . gEE)-g(x)
'ﬁ“ﬂ[g(xj g(x+ax>[ & 2@y J]
Using limit theorems, we have

=S @ s FW F@  (+ Linsesa)=g()
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i [f () j ) g F) g'0)

g(z) [g0P
d ( . [%Lf(x))]g(x) - fG) [E"(g(x))]
dx | g(¥) [e(=)F
[FTTTIML| Differentiate H;ﬁ"'swiﬂzrespectmx
Let $(x)= B g

x+1
f(@)=2x"-3x*+5 amnd g(x)=x'+1

Now f"(x)=%[2x"—3x’ +5]=2(3x")-3(2x)+ 0=6x"—6x

and g'(x}:%[.r’+1]=2x+ﬂ=2x
Using the quotient formula ¢/(x)="-" ("}g?f?t" ?{]}‘) £G) we obtain
Az
i[zﬁ-af+s]'=(ﬁx=—6x)(x=+1)—(2x’—3x’+5}(zx)
dx +1 ="+ 1Y
_ 62" —6x" +6x" —6x—(4x" - 62" +10x)
(x* +1)*
_ 62" —6x" +6x" —6x—4x" +6x” ~10x)
(x*+1)
=2.1|:“+I!5;:cz ~16x
(" +1)?

P EXERCISE 13.2

1. Differentiate w.r.t °x’.

@D x*+27+5 (ii) x"+2.§%+3 i) 2¥=3
2x+1
Gy GH=x) [J_ —lj (v) (x—5)3-2)
Vx Jx
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PR | : 2x—1
(viii) (ix) ——
x-3 V3 +1
a—x o NE+]
@ 2 o 4

3
- +1)(x2 -]
2. Fmﬂ%jf;:tﬂ %j{r I:',{_r;e[)

x?—1

[#5 )

= Ed
Differentiate (x 'i;l}{xf =D with respect 1o x.

4. Ify= J_ , show that 2 ‘f_é.;-_;r: 2Jx

5. Ify=x"+2x%+2 prove that %: 4;;,‘!.-",, A

13.7 Application of Differentiation

We will apply concept of d.lﬂ'ermtlauon to real-world problems such as (profits on
diminishing retumns, environmental factors, financial investments, population growth,
spread of diseases, movement of particles, time-speed in tramsportation, structural
stress, material required that ig changes in construction).

Profits on Diminighing Returtis

A company's profit function iz given by P(x) = 100x— 5x* ,where x is the
number of units prodiiced. Determine the marginal profit when x = 8 umits.
EXITTT, The marginal profit is the derivative of the profit function with respect to x.

P(x)= %{mnx-' 52%)=100-10x

Now, substiute x = &: P'(8)=100— 10(8) =20

So, the marginal profit is 20 when 8 units are produced (in the given currency).
Movement of Particles

A particle moves along a line according to the position function
s(f) = 4£ -3¢ + 21, where s(f) is the position in metres and ¢ is the time in seconds. Find
the velovity and acceleration at f =2 seconds.

Ve]ocit}' is the derivative of the position function:

v(t)=%(4¢"—3:’+2t)=12r’—61+2
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Substitute £ =2:
w2)=1202y" - 6(2)+2=48—12+2=38

So, the velocity at =2 is 38 m/s.

Acceleration is the derivative of the veloeity function:

a(:):%(lzﬁ-m 2)=24¢-6

Substitute t =2
a(2)=24(2) - 6 =48 —6=42
8o, the acceleration at 2 = 2 is 42 m/s?,
Flnunmal Inveriments
A bank offers a compound interest rate on an investment, and the value
ufthe investment after # years is given by F{f) = 5000(1-+0,04t}%. Find the rate of change
of the investment value after 10 years.
EXTTTTN, The mate ufchm]ge of the mveshnmtlsﬂmdmvaﬁve of ¥{z) with respect to £.

V'(e)= E(smm +0.046)*) = 5000(2)(15-!- 0,0403(0.04)

V' (£)=400(1 + 0.04¢)
Substitute t = 10: <.
¥'(10) =400 {1+ 0.04 x 10)=400(1+ 0.40) = 400 x 1.4=560
So, the investment is growing at a rate of Ra.560 per year after 10 years.
Stractural Stresy
LTI 8| The stress on a beam under a varying load is modeled by S{x) = 500x — 22,
whare S(x) is the stress in pascals (Pa) and x is the distance (in metres) from the beam’s
fixed end. Find the rate of change of siress at x = 5 metres.
i 0L The rate of change of stress is the derivative of 8{x) with rezpecitox.

sg;)_;%(sw.x—zf)ﬁm—&f
Substitute x=5:

&(5)=500—6(5) = 500—6x 25=500—150=350
So, the stress is increaging at a rate of 350 Pa per meire at x = 5 metres.

P~ EXERCISE 133 _d

1. A car’s position at time t is given by s(f) = 5£ — 3# + (. Find the velocity by
differentiating the position function with respect to time.

2.  Structural strees on a bridge is modeled by the finction S{x) = 100 — 5x%, where x
is the distance from the center of the bridge. Calenlate the rate of change of stress
at that point.
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A company's revenne fimction is given by R (x) = 1000x —10x%, where is the
number of units produced. The cost function is C{x) = 300k + 2000.

(i) Find the profit fimction P(x)

(ii) Determine the marginal profit when x = 15

An investment grows according to the function A() = 10000(1 + 0.057)°, where
A7) is the value of the investment and 7 is the time in years.

(i) Find the rate of change of the investment after 8 years.

(ii) What is the investment value after 8 years?

The position of a particle moving along a line ig given by &{f) = Sih: 127+ 8¢,
where 5(f} is the position in meters and f is the time in acconds. ‘u

(i) Determine the velocity of the particle at =4 (“\&

(i) Find the acceleration at / =4 seconds 4N

(iii) When is the particle at rest? <:‘,:

The pogition of a car traveling along a straight hj wﬁy is given by

x(f) = 30t 2— 44, where x (1) is the djslamemﬁ d'in kilometres and ¢ is the time
in hours. /(\ \,

(i) Find the car's velocity at =13 hm:@? y

(i) Determine the car's acceleranongﬁ 3 hours

The atress on & beam under s vsryfng load is given by $(x) = 40x — x°, where 5(x)
is the stress in pascals (Pa) and's is the distance from the fixed end in metres.
Calculate the rate of ehang;of s at 6 meters.

The cost C{r) to ccmmmeba cyhnr]rlw.'l tank depends on the radius of the base,

and is given by C(?\{Bﬂ()ﬂm’ Lo

ufﬂ:ebnsem&t\h\:mundlmmmpmmlsﬂmmlnﬂh:waﬂs. Determine the

mtecfch&ﬁﬁ}ifthe cost at r = 4 metres.

%\
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