Computational Structures

Student Learning Outcomes

By the end of this chapter, students will be able to:

» Define and explain the purpose of primitive computational structures, including
lists, stacks, queues, trees, and graphs.

» Identify and describe the characteristics and properties of different
computational structures.

o Perform basic operations such as insertion, deletion, traversal, and searching on
various computational structures.

¢ Understand and implement the LIFO (Last-In, First-Out} and FIFO (First-In, First-
Out} principles in stacks and queues, respectively.

e Compare and contrast different types of trees and graphs, and apply appropriate
operations to them.

¢ Analyze and choose the most suitable computational structure based on
problem requirements, data erganization, and performance considerations.

e Apply computational structures in real-world scenarios, including data
organization, task scheduling, and network modeling.

s Combine different computational structures to solve complex problems and

enhance functionality,
- A

Introduction

In this chapter, we will explore key computational structures, such as lists, stacks,
queues, trees, and graphs, which are fundamental in programming. We will examine
their properties, operations, and how to implement them efficiently. Additionally, we
will discuss selecting the appropriate structure based on specific problem requirements
and demonstrate their application in real-world scenarios.

4.1 Primitive Computational Structures

There are following commonly used computational software:

4.1.1 Lists

Alist is a data structure used to store multiple pieces of data in a specific sequence. Each
piece of data, known as an element, is positioned at a particular index within the list,
facilitating easy access and management.

4.1.1.1 List Creation

In Python, Lists are created using square brackets '[]', with each item separated by a

comma, 56
>

K

K

Create a list of items

items= ["Decorations" , "Snacks", “cold drinks", "Plates", "Balloon"]
Print the list

print(items)

In the above code:

“Items” is the name of the list. The items inside the list are “Decorations”, “Snacks”, “Cold
drinks”, “Plates”, and “Balloons”. Each item is enclosed in quotes (for text) and separated
by acomma.

4.1.1.2 List Properties

List has following properties:

1. Dynamic Size A list in Python can change its size. You can add new items to the list
or remove items without any problem. The list will automatically adjust to fit the
changes.

2. Index-Based Access Every itemin a list has a position, called an index. The first item
has an index of 0, the second item has an index of 1, and so on. You can use these
indexes to get specific items from the list.

3. Ordered Collection The order in which you add items to a list is preserved. This
means that if you add an item first, itwill stay in that position unless you changeiit.

4.1.1.3 List Operations:

Some common operations of alistare:

1. Insertion: Adding a new item to your list is like adding a new task to your to-do
list. You can insert an item at different positions in the list. You can insert an item
at any position in the list using the ‘insert()' function.

party_list = ["Buy drinks®, “Buy decorations”, "Buy snacks", “Buy cold drinks "]
party_list.insert (0, “Invite friends”) # add Invite friends at start
print{party_list)

Output: [*Buy drinks,*Buy decorations”, "Buy snacks", “Buy cold drinks "]

2. Deletion: Removing an item from your list is like crossing off a task you've
completed. You can remove items in various ways
a. Removing by Value: Use the 'remove()' function to delete the first occurrence of
a specific item.

party_list = ["Invite friends ","Buy decorations®, "Buy snacks®, "Buy cold drinks"]
party_list.remove ("Buy shacks") # Removes ‘Buy snacks * from the list
print(party_list)

Output: ['Invite friends’, ‘Buy decorations’, ‘Buy cold drinks ‘]

K

K >

b. Removing by Index: Use the 'pop()’ function to remove an item at a specific
index,

party_list = ["Invite friends ", "Buy decorations", "Buy cold drinks "]
party_list.pop (0) # Removes the item at index 0

print{party_list)

QOutput: ['Buy decorations’, ‘Buy cold drinks’]

3. Searching: Finding an item in a list is similar to looking for a specific task in your to-do
list. You can search for an item using different functions: Use the 'in' keyword to check if
an item exists in the list.

party_list = ["Invite friends", "Buy decorations”, "Buy cold drinks"]
if "Buy cold drinks" in party_list;
print("Buy cold drinks is on the list."} # Prints'if 'Buy cold drinks' is found
else;
print("Buy cold drinks is not on the list.")
Output: Buy cold drinks is on the list.

4.1.1.4 Applications of Lists
» Data Storage and Manipulation: Lists are commonly used to store and
manage collections of data, such as records, entries, or values. They allow for
easy insertion, deletion, and access to elements.
+ Stack and Queue Implementations: Lists can be used to implement stack
{LIFO) and queue (FIFO) data structures, which are fundamental for various
algorithms and tasks in computing.

4.1.2 Stacks

A stack is a simple data structure where you can only add or
remove items from one end, known as the "top”. Both insertion
and deletion of elements occur at this top end. A stack
operates on the Last-In, First-Out (LIFO) principle, meaning
that the most recently added element is the first one to be
removed.

Figure 4.1: Stack of Books
4.1.2.1 Stack Operations
There are two basic operations in a stack:
* Push Operation: Push means adding an item to the top of the stack.
¢ Pop Operation: Pop means removing the item from the top of the stack.
58

K

K

Create an empty stack of books

stack_of books =[]

print("Initial stack:", stack_of books) # Empty stack
Add books to the stack (push operation)

print("\n Adding books to the stack {push operation).")
stack_of_books.append(‘Book A’}

print("Stack after pushing ‘Book A"", stack_of books)
stack_of _books.append('Book BY)

print("Stack after pushing ‘Book B"", stack_of_books)

Remove the top book from the stack (pop operation)
print("\nDeletion of top book {(pop operation):")
top_book = stack_of_books.pop(}

print("Removed book:", top_book)

print("Stack after popping the top book:"; stack_of_books)

The code creates an empty stack to hold books. It then adds books (“Book A" and “Book
B"} one by one to the top of the stack. Finally, it removes the top bock “Book B” from the
stack, showing how the last book added is the first one taken off.

4.1.3 Queues

A queue is like a line in front of a bank or a ticket counter. The first person to getin line is
the first person to be served. In a computer, a queue works the same way. It keeps track
of things so that the first item added is the first one to be taken out. Just like in a bank
line, you add things to the back and remove them from the front, following the FIFO
(First-In, First-Out) principle, as shown in Figure 4.2

Figure 4.2: Queue of persons in front of the bank

59

K

4.1.3.1 Queue Operations
Queues support two primary operations:

» Enqueue (Add an ltem): This is like adding a person to the end of the line. In a
queue, you add items to the back.

» Dequeue (Remove an Item): This is like serving the person at the front of the
line. In a queue, you take items out from the front. Additional operations might
include checking if the queue is empty, retrieving the element at the front
without removing it, and determining the size of the queue.

> |

Built-in module to implement queues in Python

from queue import Queue

Create a new queue

q = Queue ()

Add people to the queue (Enqueue)

g. put (" Ahmed") # Adds Ahmed to the end of the queue

g-put ("Fatima") # Adds Fatima to the end of the queue

View the person at the front of the queue (Peek)

front_person = q. queue [0] # Looks at the person at the front without
removing them

print(front_person) #Remove.a person from the front of the queue(Dequeue)
removed_person = q.get () # Removes and returns the person at the front
of the queue

print(removed_person)

Add another person to the-queue (Enqueue)

q.put("Sara") # Adds Sara to the end of the queue

View the updated queue
updated_queue = list(q.queue)
print{updated_queue)

The code manages aline of people using a queue. It adds people to the end of the line,
checks who is at the front without removing them, and then serves {removes) the person
at the front. Finally, it adds another person to the end and shows the updated line.

4.1.4Trees

A tree data structure organizes information in a way that spreads out from a main point
called the root node. In a tree, each piece of information, called a node, can connect to
other pieces, which are also nodes, forming a branching structure. This branching

60
K D |

K >

structure is different from a list, where items are organized one after the other in a
straight line.

Example: In a family tree, the oldest ancestors represent the root node, serving as the
starting point of the hierarchy. Each individual in the tree may have descendants,
forming subsequent levels of the hierarchy, as illustrated in Figure 4.3. This hierarchical
structure is not suitable for storage in a linear format, such as a list, due to the complex
parent-child relationships. Therefore, a tree data structure is employed to efficiently
store and access such hierarchical data, enabling clear representation and retrieval of

information.

Grandfather | Grandmother|

Figure 4.3: Family Tree

4.1.4.1 /Properties of Trees

1. Root Node: The root is the very first ortop node in a tree, like the main folderina
computer where all other folders and files are contained.

2. Edges and Nodes: Nodes are the individual elements in the tree, and they are
connected by lines called edges. A node without any child nodes is called a leaf,
similarto a file in a folder that doesn't contain any other files.

3. Height: The height of a tree is the longest path from the root node down to the
farthest leaf. It tells us how deep ortall the tree is.

4. Balanced Trees: A tree is considered balanced if the branches on the left and
right sides are nearly the same height.

61

> |

K

4.1.4.2 Applications of Trees

1. File Systems: Pre-order tree traversal is useful for creating backups of file
systems. By visiting the root first and then recursively backing up each directory,
it ensures that directories are backed up before their contents.

2. File System Deletion: In file systems, Post-order traversal ensures that files and
directories are deleted in the correct order; by first deleting all sub directories
and files before deleting the parent directory.

3. Hierarchical Data Representation: Trees are used in representing data with a
clear hierarchical relationship, such as organisational charts and family trees.

4. Decision Making: Trees, such as decision trees, are used in algorithms to make
decisions based on various conditions and outcomes.

4.1.5 Introduction to Graphs

A Graph is a data structure that consists of a set of vertices (or nodes) connected by
edges. Graphs are used to represent networks of connections, where each connection is
a relationship between two vertices. These vertices can represent anything, like cities,
people, or even abstract concepts, and the edges represent the relationships or
pathways between them.

Imagine you are mapping out all the cities in Pakistan and the roads that connect them.
Each city is a vertex, and each road between two cities is an edge. Unlike a tree, a graph
does not have a single "root” and does not follow a hierarchical structure. In a graph, any
two vertices can be connected, creating a complex web of relationships.

Example: In a social network, each person can be connected to many others, forming a
graph. There is no single starting point, and people {vertices) can have multiple
connections (edges) that do not follow a strict parent-child relationship like in a tree.
Difference from a Tree: While both graphs and trees are used to represent
relationships between objects, a tree is a special kind of graph with some important
differences:

» A Tree is hierarchical, meaning it has a single root node from which all other
nodes branch out. In contrast, a Graph does not necessarily have a hierarchy ora
root.

* In a Tree, there is exactly one path between any two nodes, ensuring no cycles
(loops). However, in a Graph, there can be multiple paths between nodes, and
cycles are allowed.

+ Trees are often used to represent structured data like family trees or
organizational charts. Graphs are more flexible and can represent a broader
range of connections, such as networks, web links, or transport systems.

> |

62

K >

4.1.5.1 Characteristics of Graphs

Graphs have several defining features that help us understand and use them effectively:
4.1.5.2 Properties of Graphs

Graphs also have specific details that describe their structure:

« Degree: This is the number of edges connected to a vertex. For instance, if a city
is connected to three other cities, the degree of that city's vertexis 3.

* Weight: In some graphs, edges have weights that represent values like
distances or costs. For example, if a road between two cities is 50 kilometres
long, its edge might have a weight of 50.

+ Direction: Edges can be either directed or undirected. Directed edges have a
one-way connection, meaning a road from city A to city B does not necessarily
have a return road from B to A. Undirected edges represent a two-way
connection.

4.1.5.3 TypesofGraphs

Graphs can be classified into several types based on their structure and properties. The
main types of graphs are directed, undirected, and weighted. Each type has its own
characteristics, which can be better understood through simple examples.

» Directed Graphs: In a directed graph, edges have a direction, which means they
go from one vertex to another in a specific way as shown in Figure 4 4.

—
camsin WY
s('“ .

Figure 4.4: Directed Weighted Graph
Example: Consider a graph shown in Figure 4.4. If you want to travel from city A
to city B, you can only go in the direction permitted by the city's sign. If there's ne
one-way street going from city A to city B, you cannot travel directly from city A

toB.
63

> |

K >

+ Undirected Graphs: In an undirected graph, edges do not have a direction. This
means that if there is a connection between two vertices, you can travel in both
directions.

Example: Consider a graph shown in Figure 4.5, if Person A is friends with
Person B, then Person B is also friends with Person A. There is no restriction en
the direction of the friendship, so you can move freely between friends.

Figure 4.5:Undirected Graph

» Weighted Graphs: In a weighted graph, each edge has a weight or cost

associated with it. This weight represents the distance, time, or cost required
to travel from one vertexto another as shown in Figure 4.4.
Example: Imagine a map of a city where each road has a different distance or
travel time. If you want to travel from one landmark to another, the map
provides the distance or travel time for each road. This information helps you
determine the shortest or quickest route between landmarks.

K >
Multiple Choice Questions
1. The function used to add an item at the end of a list in Python:
a} insert() b) append() ¢} remove() d) pop()

2. The purpose of the in keyword used with a Python list:

a)} Adds an item to the list b) Removes an item from the list
¢} Checks if an item exists in the list d) Returns the length of the list

3. An operation that removes an item from the top of the stack:

a} Push b) Pop c) Peek d) Add
4. The operation used to add an item to"a,queue:

a} Dequeue b) Peek

¢} Enqueue d) Remove

5. True statement about the height of a tree:

a) Number of edges from the root to the deepest node
b) Number of nodes from the root to the deepest node
¢} Number of children of the root node

d) Always equal to the number of nodes in the tree
6. A(scenario where(a graph data structure is most suitable:
a} Managing a to-do list
b) Modeling a line of customers in a store
¢) Representing connections in a social network
d) All of the above
Short Questions

1. Explain howthe ' insert() ' function works in python lists. Provide an example.

65

K >

> |

ik W

]

Explain the potential issues which could arise when two variables reference the
same list in a program? Provide an example.

Define a stack and explain the Last-In, First-Out (LIFO) principle.

Differentiate between the Enqueue and Dequeue operations of queue.

Name two basic operations performed on stack

What is difference between enqueue ()} and dequeue ().

Long Questions

1.

LA I\

Discuss the dynamic size property of lists in Python. How does this property
make lists more flexible?

Explain the operations on stack with real-life example and Python code.

Write, a simple program to implement a queue (insertion and deletion).

Define Tree and explain its properties

What is a graph? Explain differences between directed and undirected graphs.

