Python Programming

Student Learning Outcomes o

By the end of this chapter, students will be able to:

e Understand basic programming concepts and set up a Python development
environment.

« Write and interpret basic Python syntax and structure, including variables, data
types, and input/output operations.

e Use various operators and expressions in Python, including arithmetic,
comparison, and logical operators.

e Implement control structures such as decision-making statements and loops in
Python.

» Work with Python modules, functions, and built-in data structures like lists.

s Apply modular programming techniques and cbject-oriented programming
concepts in Python.

¢ Handle exceptions, perform file operations, and apply testing and debugging
techniques in Python.

L
Introduction
Python is a popular and easy to learn programming language. In this unit, you will learn the
basics, setup tools and explore key components. Later, we will learn advanced topics like file
handling, debugging and data structure.

2.1 Introduction to Python Programming
Python is a versatile and applicable to various fields, including web development, data
analysis, artificial intelligence, and more. Python's straightforward syntax and clear
structure make it an excellent choice for beginners, allowing them to focus on learning
programming concepts rather than dealing with complex syntax rules.
2.1.1 Understanding Basic Programming Concepts
Computer programming is the process of creating a set of instructions that tell a
computer how to perform a task. These instructions are written in a programming
language that the computer can understand and execute.
2.1.1.1 Programming Basics
Computer programming involves the fellowing basic steps to write a program.

1. Write Code: Create a set of instructions in a programming language.

20

K

K >

2. Compile/Interpret: Translate the code into a form that the computer can

understand,

3. Execute: Run the code to perform the task.

4. Output: Display the results or perform actions based on the code.
2.1.1.2 Setting Up Python Development Environment
The development environment refers to the process of preparing a computer to write,
run, and debug Python code effectively. This involves installing and configuring the
necessary software, tools, and libraries. We can download and install Python from https:
/fwww. python.org/. When starting with Python programming, choocsing a good
Integrated Development Environment (IDE) can help make coding easier.

When installing Python, make sure to check the box that says "Add Python to PATH." This
makes it easier to run Python from the command line. We can alse use online services to
write and run Python program.

2.2 Basic Python Syntax and Structure

The following Python program demonstrates the simplicity and readability of the
language:

print("This is my first page”)

In this example, the print function is utilized to output the message enclosed in double
quotation marks, This illustrates Python's straightforward syntax, where function like
printis used to perform actions such as displaying text.

Python Comments

Lines that are not executed by the Python interpreter. They are used to provide
explanations or notes for the code. Single-line comments start with the # symbol while
multi-line comments can be created using triple quotes {*') at the beginning and the end
as shown below.

This is a single=line comment
print ("K2 is the second-highest mountain in the world "}

FFrr
This is amulti-line comment.
It can'spanmultiple lines.

Frr

print {*Edhi Foundation is the largest volunteer ambulance network.")

2.2,1 Variables, Data Types and Input / Qutput

2.2.1.1 Varlable

Avariable is a storage container in a computer's memory, that allows storage, retrieval and
manipulation of data. The value of a variable can change throughout the execution of

21
K D |

K >
aprogram:

age=71

print{ "Ahmad lived for", age, "years™)

age =60

print ("Igbal lived for", age, “years")
2.2.1.2 Variable Naming Rules in Python

Variable names in Python must adhere to the following rules:

¢ The name must begin with a letter (a-z, A-Z) or an underscore (_).

e Subsequent characters can include letters, digits {0-9), or underscores { _).

¢ Variable names are case-sensitive, meaning age and Age are considered two
different variables.

¢ Python's reserved keywords, such as for, while, if, etc,, cannot be used as
variable names.

Tidbits)

Always use meaningful names for variables to make your code easier to understand. For

example, use age instead of a.

2.2.1.3 Creating Different Types of Variables

In Python, you can create variables of different types to store various kinds of data. Here
are some common types of variables:

Integer {(int): Stores whole numbers. Example: age = 17

Floating-point (float): Stores decimal numbers. Example: price = 18.99
String (str): Stores text. Example: name = "Ali"

Boolean (bool): Stores True or False. Example: is_student = True

]] \
Tidbits J
= It's a good practice to use lowercase letters for variable names and underscores to
separate words in variable names (e.g., student_name).

2.2.1.4 mput and Output Operations
Input and output operations allow you to interact with the user. You can ask the user to
enter data (input) and display information to the user (output).
¢ Input: Use the input () function to get user input. The input {} function displays a
message on the screen and waits for the user to type something and press Enter.
The text entered by the user is then stored in a variable. For example:
| name = input("Enteryour name:") |
¢ OQOutput: Use the print (} function to display information on the screen. The print
0 function takes one or more arguments and displays them. For example:
[print("Hello, " + name +"1") |

K

22

> |

K: > |
2.2.1.5 Handling Integer and Float Inputs

To handle numeric inputs, you typically use the int{) or float() functions to convert input
strings to integers or floating-point numbers, respectively.

Integer Inputs
Example : Handling integer input

user_age = int{input("Ent er yourage: "))

print("Your age is:",user_age)

Float Inputs

Example: Handling float input
user_height = float{input{"Enter your height in meters: "))
print{"Your height is", user_height,"meter")

2.3 Operators and Expressions

Operators are symbols that perform operations on variables and values. An expression is
a combination of variables, operators, and values that produces a result.

2.3.1 Arithmetic Operators
Arithmetic operators are used to perform basic mathematical operations such as
addition, subtraction, multiplication, division, modulus, exponentiation, and floor

division as shown in the following code.
Define variables

a=10,b=3
Perform all arithmetic.operations
print(a, “+", b, "=", a+b) _#o0utput: 10+3=13
print(a, "*",b,"=",a*b) #Output: L0 *3 =30
print(a, "/, b," =",a/b)

Output: 10 /3= 3.3333333333333335

print(a, "//",b,"=",a//b}

Output: 10 // 3=8

print(a, “%", b," =",a%b)

Output: 10%3 =1

print(a, “**“, blr n — ", a % b)

Output ¢ 10**3= 1000

DO YOUW''”. Atutorial on Pythonis available at)

KNOW? (“"-”" https: //docs.python.org/3/tutorial/

2.3.2 Comparison Operators

Comparison operators are used to compare two values or expressions. They determine
the relational logic between them, such as equality, inequality, greater than, less than,
and so on. These operators return a boolean value (True or False) based on the
comparison result.

K

23

> |

K >
¢ Define variables

X, y =10, 5

$ Greater than

print {(x, ">", y, *=", x > y} # Output: 10 > 5 = True

$ Less than

print {x, "<", v, *=", x < y} # Output: 10 < 5 = False

$# Equal to

print (x, "==", y, “=", x = y) # COutput: 10 == 5 = False
$# Not Equal to

print (x, "!=", y, *=", xl=vy) # Output : 10 != 5 = {True
$# Greater than or equal to

print {x, ">=", y, *=", x >= y) # Output: 10 >=45 = True
¢ Less than

print (x, "<=", y, =", x <= y)} # Output: W@ <= 5 = False

2.3.3 Assignment Operators

Assignment operators are used to assign values to variables. The most common
assignment operator is the equal sign (=), which assigns the value on the right to the
variable on the left. There are also compound assignment operators like +=, -=, *=, and
/=, which combine arithmetic operations with assignment.

Define initial values

a=10
b=5
Assignment

assignment = a; print ("a = °, assignment) & Output: a = 10
Addition assignment

a +=b; print (“a after addition'=", a) # Output 2 = 15

Subtraction assignment

a -=b; print.(*a after subtraction =, a) # Output a =5

Multiplication assignment

a *=b;print ("a after multiplication =", a) # Qutput. a = 50

Division assignment

a /=b; print ("a after division =%, a) # Cutput:a = 2.0

Modulus(assignment

a %=b; print.(*a after modulus division =", a) # Cutput: a = 2
Exponentiation assignment

a **=b; print ("a after Exponentiation =", a) # Output: a = 100000

2.3.4 Logical Operators
Logical operators are used to combine multiple conditions or expressions in a program.
The most common logical operators are and, or and not. They are used to perform

2
K D |

K: > |
logical operations and return boolean values based on the evaluation of the expressions
involved.

#Define variables

x =True

y = False

#Logical AND
logical_and =xand y

print(x, “and ", y,"=", logical_and) # Output: Truc and False =False
#Logical OR

logical_ or=x or y

print(x, "or",y," =", logical_or) # Qutput: True and False =True
#Logical NOT

logical_not_x = notx

print(x, "not " x, " =", logical_not) # Output: Notx=False
2.3.5 Expressions

An expression is a combination of variables, operators, and values that produces a result.
For example, 3 + 4 is an expression that results in 7. More complex expressions can use

parentheses () to control the order of operations. For example:
result=(3+4)*2 #resultis 14|

f

»

Class Activity
Write a program to calculate Body Mass Index (BMI}. Ask the user for their
weight and height, then compute and display their BMI and classification. The
Body Mass Index (BMI) is calculated using the formula given below.

weight
height

BMI=
where:
e weight s in kilograms (kg)
» height is in meters (m)

2.3.6 Operator Precedence in Python

Operator precedence determines the order in which operations are performed in an
expression. In Python as well as in Mathematics, certain operators have higher
precedence and are evaluated before others.

+ Parentheses '()": Highest precedence. Operations inside parentheses are performed
first. (3 + 2} * 4 evaluates to 20.

» Exponentiation: Performs power operations next.
2* evaluatesto 8.

r
e

K >

» Multiplication "', Division '/', and Modulus '%": These operations come next. 4*3
evaluates to 12, 10/2 evaluates to 5.0 and 11%3 evaluates 2.

¢ Addition "+' and Subtraction '-: These have lower precedence compared to
multiplication and division.
5 + 2 evaluatesto 7, and 10-4 evaluatesto 6.

Class Activity
Compute the following expressions and compare results with your class

fellows and class teacher.
1. 10+ 3*2**2-5/5
2, (10+3Y*2*(2-1)/5

DO YOu !/ Using parentheses can help clarify complex expressions and ensure
LN & the operations are performed in the desired order.

2.4 Control Structures

In programming, we often need to control the flow of our program based on different
conditions or repeat certain actions multiple times. There are two main types of control
structures, Decision Making and Looping;

2.4.1 Decision Making

Decision making in programming allows the program to choose different actions based
on conditions. Python provides a variety of conditional statements to implement
decision making.

2.4.1.1 If Statement

The if statement allows us to make decisions based on conditions. If the condition s true,
it runs a block of code.

Syntax of if statement if condition:

if condition:

¥ code to run if the condition is true

Exampile: If the temperature is above 30 degrees, we print a message.

temperature = 35

if temperature > 30:
print("lt is a hot day")

2.4.1.2lf-elge Statement

The if-else statement allows us to execute one block of code if a condition is true and

anotherblock if the condition is false.

Syntax of if-else statement if condition:

if condition:
code to run if the condition is true else :

26

K

K >
else:

code to run if the condition is false
Example:

temperature = 15
if temperature > 30:

print ("It's a hot day")
else:

print ("It's not a hot day”™)
2.4.1.3 Short Hand if-else Statement
Python also allows a short-hand if-else statement that can be writtenin asingle line
Syntax of short hand if-else statement
action_if_true if condition else action_if_false
temperature = 15
m = “It's a hot day" if (temperature > 30)

else "It's not a hot day”
print(m)

Class Actlvity

Write an if-else statement and a short-hand if-else statement to check if a
number is even or odd and print the appropriate message.
2.4.1.3 if-elif-eise Statement

The if-elif-else statement allows us to check multiple conditions and execute different
blocks of code for each conditien.

Syntax of if-elif-else statement
if condition1:

code to run if conditionl is true
elif condition2:

code to run if condition2 is true

else:

code to run if none of the conditions are true
Example:

weather ="cloudy" # The output depends on the value stored in the variable weather”
if weather == "sunny":

print("Wear sunglasses™)
elif weather == "rainy™
print(*Take an umbrella™)
else :
print("Enjoy your day!")

Class Actlvity
Write an if-elif-else statement to check if a number is positive, negative, or zero.

27

K

K:
2.4.2 Looping Constructs
Loops help us repeat actions, making our code more efficient and easier to read. There
are two main types of loops in Python: while loops and for loops.
2.4.2.1 while Loop
A while loop runs as long as a condition is true. It checks the condition before each
iteration and stops running when the condition is ne longer true.

Syntax of while loop while condition:

code to run while the condition is true
Example: Add 1to a number until it reaches 10.

number = 1

while number < 10:
print(number)
number += 1

> |

Class Actlvity
Write a Python program that prints even and counts the odd numbers from 1
to 20 using a while loop.

2.4.2.2 forLoop
A for loop repeats a block of code a specific number of times. It is commonly used to

iterate over a sequence (like a list, tuple, or string).
#8yntax of for loop
for variable in sequence:
#icode to run for each element in the sequence

Example 1: Say “Hello” to each friend ina list of friends.
friends = ["Ahmad", "All", "Hassan"]

for friend in friends:
print("Hello", friend)

Explanation: In this example, the code goes through each friend in the list and prints a
greeting message for each one.

Class Activity
1. Write a forloop using range{) to print the even numbers from 2 to 10.
2. Write a Python program that prints the first 10 multiples of 3 using a for
loopand the range() function.

2.5 Python Modules and Built-in Data Structures

Python offers an extensive standard library that includes numerous built-in modules
and data structures. A data structure refers to a particular format or method for
organizing and storing data. For example, a list is a data structure that we have
previously utilized. In this section, we will examine the utilization of functions, modules,
and libraries within Python.

K

28

> |

K
2.5.1 Functions and Modules

Functions and modules in Python are key to writing efficient and organized code.
Functions allow you to encapsulate reusable blocks of code, while modules help you
structure your program by grouping related functions together.

2.5.1.1 Defining and Invoking Functions

Functions are defined using the def keyword, followed by the function name and
parentheses which may include parameters. The body of the function contains the code
to be executed and must be indented.

def function_name (parameters):;
code to be executed
Example: Define a function to greet a person.
def greet{name):
print("Hello®, name)

Function invoking means call the function by name.and
perform the required task For example.
greet (‘All")
2.5.1.2 Function Parameters and Return Values
Functions can take multiple parameters and return values.
Example: Define a function to add two numbers.
defadd (a, b):

retuma+b

> |

DO YOU' '’ You can call a function multiple times with different arguments to
MNOVE) & reusethesame codefor different inputs.

2.5.1.3 Default Parameters

Functions can have default parameter values, which are used if no argument is provided
during the function call.

Example: Define a function with a default parameter.

def greet(name = "Student”) :
return "Hello"+ name +"1"
print(greet{}))# Qutput: Hello ,Student!
print(greet(*Umer ")) # Output: Hello, Umer!
N Class Activity
Define a function that takes a list of numbers and retums the maximum value.
2.5.2 Using Libraries and Modules

In Python, libraries and modules are like toolboxes, full of useful tools that help you solve
different problems without having to build everything from scratch. In this section, we
will explain how to import and use both standard and third-party libraries in your Python

programs. 29
K: > |

K

2.5.3 Importing and Using Libraries
Libraries are like pre-built toolkits that you can use without having to write all the code
yourself.

Example: Import the random library to generate random numbers.
import random

Generate a random number between 1 and 10
number = random.randint(1, 10)

print{"The random number is:", number)

> |

Import datetime
Get the current date and time

current_time = datetime.datetime.now(}
print("Current date and time:", current_time)

import statistics
Calculate the mean of a list of numbers

data = [23, 45, 67, 89, 12, 44, 56]
mean_value = statistics.mean(data)
print("The mean value is:", mean_value)

2.5.3.1 Package Structure

To manage large projects, you can organize modules into packages. A package is simply
a directory containing related modules. For example, if you're building an e-commerce
platform, you could create a package named ecommerce with modules like products
.py, customers .py, and orders.py.

Example: In ecommerce/products.py:

def List products () :
return ["Laptop"”,"Mobile", "Tablet"]
In your main Script

from ecommerce import products
available_products = products.List_products()
print{available_products)

Qutput:

['Laptop’, ‘Mobile’, ‘Tablet’]

Explanation: In this case, ecommerce is the package, and products.py is the module.
This structure helps you keep your code organized and manageable.

30

K >

Tidbits)

Organizing your modules into packages is like organizing books into sections of a
library—it makes finding and maintaining your code much easier.

2.6 Built-in Data Structures

Python provides several built-in data structures that are essential for organizing and
manipulating data efficiently. These include lists, tuples, and dictionaries, each offering
unique features to handle various types of data and perform common operations.

2.6.1 Lists

In Python, a list is a versatile data structure that can hold a collection of items. You can
create, access, and modify lists easily.

2.6.1.1 Creating, Accessing, and Modifying Lists
A list is created by placing items inside square brackets [], separated by commas. Lists

can contain items of different types, such as numbers, strings, or even other lists.
Example: Create a list of your favorite fruits.

fruits = ["Mango”, "Apple" "Banana"]

print{fruits)

Cutput: ['Mango’, "Apple *, 'Banani]
2.6.1.2 Accessing List Items

You can access items in a list by referring to their index, starting from 0. Example: Access
and print the second item from the list of fruits.
fruits = ["Mango“, " Apple”, “» panang”

print(fruits [1])
Output: Apple

Explanation: The code initializes a list ‘fruits’ containing ‘Mango', 'Apple’, and 'Banana’,
then prints the second item, 'Apple’, using theindex' 1.

2.6.1.3 Modifying a List

You can modify list items by accessing them via their index and assigning a new value.
Example: Change the firstitemin the list to "Orange" and add a new fruit "Pineapple”.
fruits = ["Mango", "Apple", "Banana"]

fruits [0] = "Orange”

fruits.append("Pineapple”)

print(fruits)

Qutput: [Orange’, 'Apple’, ‘Banana’, 'Pineapple’]

31

K >

Explanation: The code modifies the first element of the 'fruits’ list to 'Orange’, appends
'Pineapple’ at the end, and prints the updated list.
2.6.1.4 Methods and Operations on Lists
Python provides several built-in methods to work with lists. Here are a few useful ones:
= append (item) - Adds an item to the end of the list.
» remove (item) - Removes the first occurrence of an item from the list.
= sort{) - Sorts thelistin ascending order.
» reverse (} - Reverses the order of the list,
Example: Add a new student to the list of students and then sort the list.

students = ["Ahmed", "Sara", "Ali"]
students.append("Hina")
students.sort ()
print(students)

Output : [[Ahmed’, 'Ali’, 'Hina', ‘Sara’l
Explanation: The code creates a list of students, adds 'Hina' to it, and sorts the list
alphabetically.

2.6.1.5 List Operations

Lists also support various operations, such as slicing and concatenation.
Example: Slice a portion of the listand concatenate it with another list.
numbers =1, 2, 3, 4, 5]

slice = numbers [1:4] # Gets items from index 1 to 3

extra_numbers = [6, 7]

combined = slice + extra numbers

print(combined)

Output : [2, 3, 4,6, 7]

Explanation: The code slices the 'numbers' list from index 1 to 3, combines it with
‘extra_numbers’, and prints the resulting list'[2, 3,4,6.7]".

Example: Sort a list of student names and remove a specific name.

student _names= ["Ahmed", "Sara", "Ali", "Hina"]
student names.sort ()

gtudent _names.remove(" Sara")

print(student _names)

Output: [’Ahmed *, * Ali’, "Hina ’]

Explanation: The code sorts the list 'student_names' alphabetically, removes 'Sara' from
the list, and then prints the updated list.

K >

Class Activity]

Imagine you are maintaining a list of your favorite books: ["To Kill a
Mockingbird”, "1984", "The Great Gatsby", "Pride and Prejudice"]. Perform the
following tasks using Python:

1. Add anewbook "Moby Dick" to the list.

2. Replace "1984" with "Brave New World".

3. Remove "The Great Gatsby" from the list.

4. Merge this listwith ancther list of books: ["War and Peace”, "Hamlet"].

5. Printthefinal list of books.

Tidbits)
Use list methods like append(} and remove (} to efficiently manage and modify your Iists.]
For larger projects, organizing data in lists helps keep your code clean and manageable.
2.6.2 Tuples

In Python, tuples are a type of data structure used to store an ordered collection of
itemns, similar to lists, but with a key difference: tuples are immutable, meaning their
values cannot be changed after creation.

Example

Creating a tuple

my_tuple = (1, 2, 3, "Hellc", 4.5}

Accessing elements by index
print{my_tuple[0]) # Output: 1
print(my_tuple(3]) ; Output: Hello
Tuple length

print{len(my_tuple})) # Output: 5

2.6.3 Indexingand Slicing

Indexing and slicing are essential techniques in Python for accessing and manipulating
sequences such as lists, tuples, and strings.

2.6.3.1(Indexing

Indexing allows you to access individual elements in a sequence. Python uses zero-

based indexing, meaning the first element has an index of 0, the second element has an
index of 1 andsoon.

2.6.3.2 Slicing
Slicing allows you to access a subset of a sequence. The syntax for slicing is sequence

[start: stop: step], where start is the starting index, stop is the ending index (not
inclusive), and step is the step size.

2.6.3.3 Indexing and Slicing with Negative Indices

Negative indices count from the end of the sequence. For example, -1 refers to the last
element, -2 refers to the second last element, and so on.

Example: Indexing and slicing with both positive and negative indices onallist
33

K

> |

Create a list of fruits

fruits = ["Apple", "Banana", "Cherry", "Date", "Elderberry "]
Indexing

print("First fruit:", fruits [C]) # Positive index

print("Last fruit:", fruits [-1]) # Negative index

Slicing with positive indices

print("Fruits from index 1 to 3:", fruits[1:4])

Slicing with negative indices

print("Fruits from index -4 to -1:", fruits [-4: - 1])

Explanation: This code demonstrates list operations in Python: creating a list of fruits,
accessing elements using positive and negative indexing, and slicing the list with both
positive and negative indices.

Class Activity h
Consider the following list, tuple, and string:
List:[10, 20, 30,40, 50, 60, 70, 80]
Tuple: ("Math", "Science", "English”, "History", "Geography")
String; "Python Programming"
Perform the following operations:
1. Access and print the third element from each sequence (list, tuple, and
string).
2. Slice and print elements from index 2 to 5 from the list and the tuple.
3. Slice and print characters from index 7 to the end of the string.
4. Use negative indexing to print the last two elements from the list and
the tuple.
5. Use negative slicing to print characters from the second last to the last
characterof the string.
| Write the Python code to perform these operations and print the results.

| u -\
Tidbits
Indexing and slicing are powerful tools for working with sequences in Python. Practice

these techniques to become more proficient in manipulating data and accessing specific
parts of sequences.

2.7 Modular Programming in Python

Modular programming is a technique used to divide a program into smaller,
manageable, and reusable pieces called modules. By breaking a program into modules,
developers can work on different parts independently and reuse code efficiently. This
approach simplifies managing complex programs and promotes code reuse.

The maln Function

The main function in Python defines where the program should start. It's usually placed
in a block that checks if the script is being run directly orimported as a module.

Example: Here's a simple example: 34

K

> |

K: > |
main.py
defmain () :
print("This is the main function.")
if name =" main ":
main()

Explanation: In this example, the main(} function will only run if the script is executed
directly, not when it's imported elsewhere. This setup is useful in larger projects that
have multiple modules.

Tidbits)
Using the main function with modules helps keep your code organized, making it easier

to maintain. Always use the main function to define the starting point of your program,
and use modules to separate different parts of your code.

00 YOU .~ Python's standard library is made up of hundreds of modules that you
KNOW? Ko be used to perform common tasks, like working with dates,
@ ¥ generating random numbers, or reading files.

Class Activity
Create a Python module named calculator.py that includes two functions:

1. add (&, b) - This function should return the sum of two numbers.

2. subtract {a, b} - This function should return the difference between two
numbers. Then, write a script named main.py that imports your
caleulator module and uses these functions to perform the following:

1. Printthe result of adding 15 and 8.

2. Print the result of subtracting 10 from 25.

Make sure to run your main.py script and verify that the output is correct.

2.8 Object-Oriented Programming in Python
Object-Oriented Programming (OOP} is a way of designing and organizing code to
make it easier to manage and understand.
2.8.1 (Class and Objects
Adlass is like a template for creating things, and an object is an actual thing created from
that template. Imagine you want to make a toy car. You first need a blueprint or a
template that describes how the toy car should look and function. This template
includes details like:

» Color + Size » Numberofwheels + Type of material
The template is not an actual toy car; it's just a plan and it represents a class. Using the
template, you can create multiple toy cars. Each object is an instance of the class,
meaning it follows the plan to have its own specific characteristics.

2.8.1.1 Defining Classes and Creating Objects
In programming, we use classes as concepts to define what an object should be like.

35
K

> |

K

Define a class called ToyCar
class ToyCar:
The _init_ method initializes the object with specific attributes
def _ _init_ _(self, color, size, wheels):
self.color = color # Color of the toy car
self.size = size # Size of the toy car
self wheels = wheels # Number of wheels in the toy car
Method to describe the toy car
def describe(self):
return f*This toy car is {self.color}, size {self.size}, and has {self. wheels}
wheels.”
Create objects of the ToyCar class
car1 = ToyCar("red", "small", 4)
car2 = ToyCar("blue", "large", 6}

Print descriptions of the toy cars
print(car1.describe()
print{car2.describe())

Explanation:

Class Definition: The "ToyCar” class is like the template for making toy cars. It describes
what attributes a toy car should have: color, size, and wheels.

Creating Objects: “carl” and "car2” are specific toy cars object created using the ToyCar
template. Each has its own unique attributes.

Using Methods: The describe ()method allows us to get a description of the toy car.
Self: selfis a convention used in Object-Oriented Programming (OOP) to represent the
instance of a class within its methods.

2.9 Advanced Python Concepts

Advanced Python concepts extend the foundational knowledge and empower
programmers to handle mere complex tasks effectively. This section covers key topics
such as exception handling, which deals with managing errors gracefully, and file
handling, which involves reading frem and writing to files. Mastering these concepts is
essential for developing robust and efficient Python applications.

2.9.1 Exception Handling

Exception handling is a mechanism to manage errors that occur during program
execution. It allows a program to continue running or gracefully terminate if an error
occurs, ensuring more robust and error-resilient code.

2.9.1.1 Try-Except Blocks

In Python, the try block lets you test a block of code for errors, and the except block lets
you handle errors if occur.

Example:
K

> |

K

Input a
try:

result =10/a # This line creates error if the value of ‘a’ is 0
except ZeroDivisionError:

print("You can’t divide by zero!")

Explanation: In this example:

« Thetry block contains code that might cause an error.

« The except block catches the ZeroDivisionError and handles it by printing a
message.

2.9.1.4File Handling

File handling involves reading from and writing to files, It is essential for storing data
persistently.

2.9.1.5 Opening, Reading, and Closing Files

To read a file, open it using the open(} function, read its contents, and then close the file
to free up resources.

Open and read a

with open("example .txt", "r") as file:
content = file .read ()

print{content)

Explanation: Inthe above code:
« The with statement ensures that the file is properly closed after its suite finishes,
even if an error occurs.
« The file is opened inread mode {r), read contents into content, and then printed.
» The file opened using 'with' is automatically closed.
2.9.1.6 Writingto Files
To write to a file, open it in write mode (w) and use the write (} method. To append data,
use append mode (a).

Writing to a file

with open("example.tct”, "w") as file:
file.write(" As-Salaam-Alaikum, WorldI\n")

Appending to a file

with open("example.txt", "a") as file:
file.write("Appending new line\n")

Explanation: In the above code:

« Thefileis opened in write mode (w) to overwrite its contents and write new data.

« The file is opened in append mode (a) to add data without overwriting existing

content.

37

> |

K:
2.10 Testing and Debugging in Python

In Python programming, testing and debugging are essential practices to ensure that
your code works correctly and efficiently.

2.10.1 Testing
Testing is the process of running your code with various inputs to check if it behaves as
expected. The goal is to find and fix any issues before the code is used in real-world
applications.
2.10.1.1 Types of Testing

» Unit Testing: Tests individual parts of the code (like functions or classes) in

isolation. Python's unittest module is commonly used for this.
» Integration Testing: Checks how different parts of the code work together.
+ Functional Testing: Validates that the software behaves as expected from the

> |

user's perspective.
+ Regression Testing: Ensures that new changes den't break existing functionality.
2.10.1.2 Debugging

Debugging is the process of finding and fixing errors (bugs} in your code. It involves
identifying the root cause of problems and making the necessary changes.
2.10.1.3 Common Debugging Techniques
+ Print Statements: Adding print statements to check the values of variables at
different stages of the code.
» Debugging Tools: Using tools like pdb (Python Debugger) to step through the
code, inspectvariables, and understand the flow of execution.
» Error Messages: Reading and interpreting error messages to locate the source of
the problem.

K >

Multiple Choice Questions

1. An action needed during Python installation to run from the command line easily:

a) Uncheck "Add Python to PATH" b) Choose a different IDE
¢} Check "Add Python to PATH" d) Install only the IDE
2. A valid variable name in Python is:
a) variablel b} 1variable ¢) variable-name dj} variable name
3. Output of the following piece of code is:
age = 25
print(" Age : ", age)
a) Age: 25 b) 25) Age d)} age
4. The operator used for exponentiation in Python'is:
a)* b) ** o) // d} /
5. A loop used to iterate over a collectionsuch as lists is:
a) while b} for ¢) do-while d) repeat

6. A range()function used to generate @ seguence of numbers:
a) Generates a list of numbers
b} Creates a sequence of numbers
¢) Calculates the sum of numbers
d) Prints a range of numbers
7. A keyword used to défine a*functiondn Python:
a) define b} function ¢} def d} func
8. The Output of the following code'is:
temperature, humidity, wind_speed = 25, 60, 15
print("Hot and humid" if temperature > 30 and humidity > 50 else
"Warm and breezy" if temperature == 25 and wind_speed > 10 else
"Cool and dry" if temperature < 20 and humidity < 30 else

"Moderate"}
a) Hot b} Warm c) Cool d} Nothing
9. The operationused to combine two lists in Python:
a) combine(} b)concat} c)+ d} merge()
Short Questions

1. Explain the purpose of using comments in Python code.
2. Describe the difference between integer and float data types in Python. Provide an
example of each.
3. Define operator precedence and give an example of an expression where operator
precedence affects the result.
39

K >

K >

4. How does the short-hand if-else statement differ from the regular if-else statement?
5. Explain the use of the range() functionin a forloop.
6. Explain how default parameters work in Python functions.
7. Explain why modular programming is useful in Python.
8. Explain the difference between a class and an object in Python.
Long Questions
1. Evaluate the following Python expressions.
(@) (18/3 +4**2)-(2*{7-3)/(97,4)
by 25 +3*4**2-6)/(2*3 +1)-7
€ (12+6*5-2)*2/(d*2-7}+ 10)
() 45/2**2+ 3*4)+8*(7-3)
. Translating the following mathematical expressions to Python syntax
3. (@ 5x(3+2)
6-2x3
(b) 7+2°
4. Explainthe concept of variables in Python.
5. Write a Python program that takes a number as input and checks whether it is
positive, negative, or zero using an if-elif-else statement.
6. Write a Python program using a while loop that prints all the odd numbers between
1and100. Also, count and print the total number of odd numbers.

N

40

