ahe Do Dgblndy

{In the Name of Allah, the Most Merciful, the Most Compassionate.)

COMPUTER SCIENCE
AND

)

PECTAA

Transtormation, inacvation and Excallance

PUNJAB EDUCATION, CURRICULUM,
TRAINING AND ASSESSMENT AUTHORITY

This textbook is based on Updated/Revised National Curriculum
of Pakistan 2023 and has been approved by the Punjab Education,
Curriculum, Training and Assessment Authority (PECTAA).

All rights are reserved with the PECTAA.

:__._E;;;._ No part of this textbook can be copied, translated, reproduced or used for preparation of
‘ test papers, guidebooks, keynotes and helping books. Ll

Contents
Unit No. Unit Name Page No.

1 Introduction to Softwara Development 01
2 Python Programming 20
3 Algorithms and Problem Solving 41
4 Computatlonal Structures 56
5 Data Analytics 67
& Emerging Technologies 86
7 Legal and Ethical Aspects of Computing System 101
8 Online Research and Digital Literacy 115
9 Entrepreneurship in Digital Age 125

Answers 141

Authors:

¢ Prof. Dr. Muhammad Atif Chattha
Dean Faculty of Computer Science, Lahore Garrison University, D.HA, Lahore.

e Prof. Dr. Syed Waqar ul Qounain Jaffry
Chairman Department of IT, University of The Punjab,

Allama Igbal Campus, Lahore. Exparimental
Edition
Reviewer:
e Dr. Arshad Ali Dr. Mudasser Naseer

Associate Professor, Departmant

Head {Cyber Security), FAST School of Computing
National University of Computing and Emerging
Sciences, Lahore

Dr. Abdul Sattar

Assistant Professor, Lahore Garrison
University, D.H.A Lahore.

Mr. Muhammad Fahim
Associate Professor (Computer Science)
Govt. Graduate College for boys, Gulberg,

Assadate ProfassorCS),

Department of CS & [T,
University of Lahore Defense Road, Lahare

Mr. Sagib Ubaid
Assistant Professor {Computer Science).
Khawaja Fareed University of IT, Rahim Yar Khan

Mrs. Tabinda Mugaddas

Assistant Professor, Head of Department {CS),
Govt. Associate College for Women,

Lahore Gulshan Ravi, Lahore.
e Muhammad Asif Majeed Khan Egrricf;?had Asif
$STAM, Govt Madel High Schag), Jagpuir Govt. Lai) Higher Secendary School,
QAED Kasur.

Prof. Mahmood Ahmad Chaudhry
The Crescent College, Shadman, Lahore

Mr. Jahanzaib Khan
Asistant Director (Curriculum-Sciences), PECTAA

Director Deputy. Diractor Assistant Director
{Curriculum and Compliance) {(Compliance-Sciences) {Curriculum-Sciences)
Mr. Aamir Riaz Syed Saghir-Ul-Hassnain Tirmizi Mr. Jahanzaib Khan
Incharge Art Cell Design & Layout Ilustrator Composer
Ms. Aisha Sadiq Ms. Minal Tarig Mr. Ayat Ullah M. Azhar Shah

Ms. Sameira Ismail

Introduction to
Software Development

Student Learning Outcomes e

By the end of this chapter, students will be able to:

* Define software development and explainits importance.

* Understand and describe key software development terminclogy, including
Software Development Life Cycle (S8DLC), debugging, testing, and design patterns.

» Explain the stages of the SDLC and the objectives and activities involved in each
stage.

« Differentiate between various software development methodologies such as the
Waterfall model and Agile methodology.

* Plan a software project by selting timelines, estimating costs, and managing risks.

= Recognize and apply quality assurance techniques to ensure software standards.

» Utilize Unified Modeling Language (UML) diagrams to represent software systems.

* |dentify and apply common software design patterns in software design.

s Employdebugging technigues and testing strategies to ensure software reliability.

« Understand and utilize various software development tools, including Integrated
Developrnent Environment (IDEs), compilers, and source code repositories.

Introduction

Software development is a systematic process that transforms user needs into
software products. It involves a series of stages, from initial analysis through design,
coding, testing, and deployment. Each stage has its own importance and requires
specific skills and tools. Understanding the software development process is crucial
for creating reliable, maintainable, and scalable software solutions. The chapter
introduces the fundamental concepts of software development, including key
terminology, the Software Development Life Cycle (SDLC), software development
methodologies, project planning and management, quality assurance, and software
design patterns.

1.1 Software Development
Software development is the process of creating computer programs designed

to perform specific tasks. It involves writing code, testing it, and addressing any

issues that arise.
1

> |

K

1.2 Introduction to Software Development Life Cycle
(SDLC)

Software Development Life Cycle (SDLC) is a framework that defines the processes used
by organizations to build an application from its initial conception to its deployment and
maintenance. The primary purpose of SDLC is to deliver high-quality software that
meets customer expectations, reaches completion within time and cost estimates, and
works efficiently.

1.2.1 Frameworkin Software Development

In software engineering, a framework is a standardized and reusable set of concepts,
practices, and tools that provides a structured foundation for developing software
applications. It offers predefined components and architectures that facilitate the
implementation of specific software functionalities, allowing developers to focus on
writing code specific to their application rather than reinventing common solutions.
Frameworks promote efficiency, consistency, and code reusability, that improve the
overall quality and maintainability of software systems.

Example: Imagine you want to create a website. Instead of writing all the code from
scratch, you can use a framework like Django (for websites). Django comes with ready-
made features like user login, database management, and page templates.

1.2.2 Stagesinvolved in SDLC

The SDLC is an organized method for developing software that ensures it meets quality
standards and functions properly. The SDLC consists of several steps as shown in Figure
1.1. Each step has distinct tasks and goals.

1.2.2.1 RequirementGathering

In this initial phase, the goal is to understand and collect what the software needs to
achieve. This involves talking to the people who will use the software, as well as other
stakeholders, to find out their needs and expectations.

> |

Figure 1.1: Systern development life cycle stages
2

K >

Key activities in this phase include:
+ Interviews and Surveys: Asking questions and collecting feedback from
potential users to understand their needs and preferences.
« Observations: Watching how users interact with current systems to identify
problems and opportunities forimprovement,
« Document Review: Looking at existing documents, such as reports and user
manuals, to gather additional information about the requirements.
Functional and Non-Functional Requirements
Requirements are generally categorized into two types, functional and non-functional
requirements.
Functional Requirements
Functional requirements describe the specific behaviors or functions of a system. These
requirements outline what the system should do and include tasks, services, and
functionalities that the system must perform.

They define the interactions between the system and its users or other systems.
Example:
Some functional requirements for a Library Management System are:
» User Registration: The system should allow users (students and faculty) to
register and create an account.
» Book Borrowing: The system should enable users to search for books and
borrow them.
« Inventory Management Librarians should be able to add, update, and remove
books from the inventory.
Non-Functional Requirements
Non-functional requirements define the quality attributes, performance criteria, and
constraints of the system. These requirements specify how the system performs a
function rather than what the system should do.
Example:
Some non-functional requirements for a Library Management System are:
» Performance: The system should handle up to 1000 simultaneous users without
performance degradation.
» Reliability: The system should be available 99.9% of the time, ensuring high
availability and minimal downtime.
» Security: User data should be encrypted, and access should be controlled
through secure authentication mechanisms.

3

K: > |
Differentiating Functional and Non Functional Requirements:
Functional Requirements Non-Functional Requirements
Define specific behaviors or functions of Define the quality attributes and constraints
the system of the system
What the system should do How the system should perform
Directly related to user interactions and Related to system performance, usability,
system tasks reliability, etc. o~ X
Table 1.1: Comparison between Functional and Non-Functional Requirements
1.2.2.2 Design

In the design phase, we plan out how the software will look and work. During this phase,
we:

« Create Diagrams: To show how different parts of the software will connect and
work together. For example, we draw a flowchart to map out the steps the
program will take to complete a task.

» Develop Models: To represent the software's structure. This could include
creating mockups of the user interface, showing what the program will look like,
and how users will interact with it.

« Plan the Architecture: To decide the overall structure of the software,
including how different components will interact. This helps ensure that the
program is organized and functions smoothly.

+ Specify Requirements: To define clearly what each part of the software
needs to do, ensuring that all features are planned out and nothing is
overlocked.

These steps help to ensure that the final software is well-organized, user-friendly, and
meets the needs of its users.

Tidbits)

Think of this phase like designing a new house. You need blueprints to show where the
rooms and furniture will go before you start building.

1.2:2.3 Coding /' Development

Based on the design specifications, which outline what the software should do and how
it should look, programmers translate these specifications into a programming
language.

1.2.2.4 Testing

Testing is the process of checking software to identify any bugs, errors, or issues. Think
of it as a quality check to make sure everything works as expected. This includes:

4

K >

> |

+ Functionality Testing: Ensuring all features of the software work according
to the specifications.

« Performance Testing: Checking if the software performs well under different
conditions, such as high traffic or heavy data.

+ Compatibility Testing: Making sure the software works well on various
devices and operating systems.

1.2.2.5 Deployment
Deployment is the process of making software available for users to access and use.
This often involves several steps:

+ Installation: The software is installed on the user's system or server. This may
involve running an installation program that copies files and sets up necessary
configurations.

« Configuration: The software is adjusted to fit the specific needs of the user or
organization. It can include setting up user preferences, network settings, and
database connections.,

« Testing in the Real-World: After installation, the software is tested in its real-
world environment to ensure it works correctly with other systems and meets
user needs.

1.2.2.6 Maintenance
The final phase involves ongoing maintenance and updates. This ensures the software
continues to function correctly and adapts to any changes in user needs or technology.

1.3 Software Development Methodologies

Software development methodologies are structured approaches to software
development that guide the planning, creation, and management of software projects.
They help ensure that the development process is systematic, efficient, and produces
high-quality software.

1.3.1 Introduction to Software Process Models
Software process models are abstract representations of the processes involved in the
SDLC. They provide a framework for planning, structuring, and controlling the
development of software systems. The importance of software process models lies in
their ability to provide:
+ Predictability: By following a defined process, teams can predict outcomes
and manage risks more effectively.
« Efficiency: Structured methodologies streamline the development process,
reducing wasted effort.
« Quality: Adhering to a process model ensures that quality assurance
practices are integrated throughout the SDLC.

5

K- » |
1.3.1.1 Waterfall Model

The Waterfall Model is a straightforward approach to software development where each
phase of the project must be completed before the next one begins. This model is linear
and sequential, meaning that you move through each phase in order, without going
back to previous phases once they are completed as shown in Figure 1.2. The main
phases of the Waterfall Model are;
+ Requirements: Gather and document what the software needs to do.
« Design: Plan how the software will be built and how it will look.
+ Implementation: Write the actual code to create the software.
« Testing: Check for and fix any problems or bugs in the software.
» Deployment: Release the software for users to use.
+« Maintenance: Make updates and fix any issues that come up after the
software is in use.
Benefits and Limitations
» Benefits:
1. Simple and Easy to Understand: The Waterfall Model is easy to follow
because it has clear, distinct phases
2. Sequential Process: Each phase is completed one at a time, which makes it
easier to manage and track progress.
3. Suitable for Small Projects: Works well for projects with clear, fixed
requirements where changes are unlikely.
» Limitations:
1. Inflexibility: Once a phase is completed, going back to make changes is
difficult and costly.
2. Not Ideal for Complex Projects: For projects with evolving requirements or
complex designs, this model can be challenging to use effectively.
3. Riskand Uncertainty: The model assumes that all requirements are known
from the start, which can be risky if new needs or issues arise later in the

process.
Requiremants

- Define project scope Heim

- Stakeholder Intervews

- User Research Implementation

3 . - High-level deslgn
- ET: gathering _ D:igrl EEH 9
. meeting Pt 125 :
ot [

- Review
- Dev phase 2
e Testing Deploymant

- Revidons
- Deployment Maintenance
Figure 1.2: Waterfall Model

6

K: > |
1.3.1.2 Agile Methodology
Agile Methodology is a flexible and adaptive approach to software development. Agile
focuses on delivering small, functional parts of the software quickly and adapting to
changes as the project progresses. The main idea is to work in short cycles, called
iterations or sprints, which help teams deliver parts of the software rapidly and gather
feedback early as shown in Figure 1.3. Agile methods include practices such as:
+ Continuous Integration: Regularly merging code changes into a central
repository to detect and fix issues early.
+ Test-Driven Development: Writing tests before writing the code to ensure the
software works as expected.
+ Pair Programming: Two developers work together at one workstation, with one
writing code and the other reviewing itin real-time.

Dud;mmt

Figure 1:3: Agile Methodology
Benefits and Limitations
» Benefits:

1. High Flexibility: Agile allows for changes in requirements even after
development has started, making it easier to adapt to new needs orfeedback.

2. Improved Customer Satisfaction: Regular updates and frequent delivery of
working software mean that customers can see progress and provide feedback
more often.

» Limitations:

1. Scaling Challenges: Managing large projects with many teams can be difficult,
as itrequires careful coordination and communication.

2. Stakeholder Involvement: Agile requires active participation from all
stakeholders, which can be challenging if some are unavailable or not fully
engaged.

3. Less Predictable: Since Agile projects evolve through feedback and changes, it

can be harder to predict the exact timeline and scope of the final product.
7

> |

K >

1.4 Project Planning and Management

Planning a software project is like planning a trip. You need to know where you're going,
how long it will take, and how much it will cost.

@ &

. ® ®
v B # & K

Figure 1.4: The 5 Phases of a Project Management Plan

1.4.1 Comprehensive Project Planning

Comprehensive project planning involves thinking about all the details of your project
before you start. This includes understanding what needs to be done, who will do it, and
how itwill be done.

DO YOU .. Bigsoftware companies are worth a lot of money, for example in
R E - 2023, Microsoft’s worth was $ 2 Trillion. This shows how
o' important software is in today's digital world.

1.4.2 Setting Project Timelines
Setting project timelines means deciding how long each part of the project will take. This
helps keep the project on track and ensures it gets done on time.

1.4.3 Estimating Costs

Estimating the cost of a software project is a critical step in project planning and
management. It involves predicting the total expenses required to complete the project
successfully. Accurate cost estimation helps in budgeting, resource allocation, and
setting realistic expectations.

Key Factorsin Cost Estimation:

+ Development Team: The cost depends on the number of developers, their
expertise, and their hourly rates.

« Technology Stack: The choice of technology, programming languages, and
tools can affect the cost. Some technologies require more resources or
specialized knowledge.

+ Project Duration: Longer projects generally incur higher costs due to
prolonged resource engagement and potential changes in scope.

+ Risk Management: Identifying potential risks and their mitigation strategies
can add to the overall cost. Contingency funds are often included to address
unforeseen issues.

= Quality Assurance: Costs associated with testing, bug fixing, and ensuring the

8
D |

K

K

+ software meets quality standards, are also part of the estimation.
1.4.4 Risk Assessment and Management
Risk assessment and management are crucial aspects of any software project. They
involve identifying potential risks that could impact the project's success, analysing the
likelihood and impact of these risks, and developing strategies to manage them.
Steps in Risk Assessment and Management:
1. Identify Risks: List all potential risks that could affect the project. These could be
technical risks, such as technology changes; operational risks, like resource
shortages; or external risks, such as market fluctuations.

> |

2. Analyze Risks: Evaluate the likelihood of each risk occurring and its potential

impact on the project.

3. Develop Mitigation Strategies: For each significant risk, develop a plan to
reduce its likelihood or minimize its impact. This could involve adding buffers to
the schedule, securing backup resources, or conducting additional testing.

4. Monitor and Review: Continuously monitor the project for new risks and
review existing risks to adjust strategies as necessary.

1.4.5 Execution

This is the phase where actual development work happens. The team writes codes,
creates designs, and builds the software based on the project plan, it requires team
work, coordination and regular updates to stay on track.

1.4.6 Quality Assurance

Quality assurance ensures that a project meets set standards and works correctly. It
involves methods such as testing, reviewing code, getting feedback from stakeholders,
and regularly checking the project's progress.

1.5 Graphical Representation of Software Systems

Graphical representation of software systems involves using visual diagrams to depict
various aspects of a software system's structure and behavior. This approach helps in
simplifying complex systems, making it easier for developers and stakeholders to
understand, communicate, and manage the system.

1:5.1 Introduction to UML

Unified Modeling Language (UML) is a standardized way to visualize the design of a

software system. It helps developers understand how a system works and
communicates.

1.5.2 Types of UML Diagrams

In this section, we will discuss four types of UML diagrams that are given below.

1.5.2.1 Use Case Diagrams

Use case diagrams provide a visual representation of the system's functionality from the

9
K D |

K >

user's perspective, helping to identify the requirements and the interactions between
the users and the system.

Definition and Purpose:

A use case is a description of a set of interactions between a user {actor} and a system to
achieve a specific goal. Use cases are identified based on the functionalities that the
system must support to meet the user's needs. Each use case represents a complete
workflow from the user's perspective, detailing the steps involved in accomplishing a
particulartask.

Use Case Diagrams are used for several purposes:

1. Capturing Functional Requirements: They help in identifying and
documenting the functional requirements of the system.

2. Understanding User Interactions: They illustrate how different users will
interact with the system,

3. Planning and Testing: They aid in planning the development process and in
designing test cases for validating system functionalities.

Identifying Use Cases:
The process of identifying use cases involves several steps:

1. Identify Actors: Determine the different types of users who will interact with the
system. Actors can be human users or other systems.

2. Define Goals: For each actor, identify their goals or what they need to
accomplish using the system.

3. Outline Interactions: Describe the interactions between the actors and the
system to achieve these goals. Each interaction that results in a significant
outcome is a potential use case.

4. Validate Use Cases: Review the identified use cases with stakeholders to ensure
they accurately capture the required functionalities and interactions.

| Simple Use case diagram |

-
Librarian Student
Figure 1.5: Example Use Case

Diagram for a Library System

10

K

Class Actlvity

Statement: Imagine you are designing an online shopping platform. The
platform allows customers to browse products, add items to their cart, and
make purchases. Additionally, the platform includes features for
administrators to manage product listings, process orders, and handle
customer inquiries. There is also a feature for delivery personnel to update the
status of deliveries.
In the above class activity, you can compare your findings with the following:
e Actors:

o Customer

o Administrator

o Delivery Personnel
o Use Cases:

o Browse Products
Add Items to Cart
Make Purchase
Manage Product Listings
Process Orders
Handle Customer Inquiries
Update Delivery Status

0 O 0 Cc 0 0O

1.5.2.2 Class Diagram

Aclass diagram is like a map that shows how things are organized in a system.
Example:

Inthe example of organizing your room as shown in Figure 1.6:

Room: Represents the overall space encompassing all other elements,
analogous to the main structure in a class diagram.

Boxc: Serves as acontainerwithin the room, akinto a class in adiagram.
Attributes: Each box contains specific items, such as a "“ToyBox' holding toysora
'‘BookBox' containing books.

Methods: Boxes can perform actions like 'open’ or 'close,’ similar to methods in
a class diagram that define what the box can do.

Specific Boxes: Examples of specialized boxes include a "ToyBox' for toys, a
'‘BookBox' for books, and a 'ClothesBox' for clothes, representing distinct
instances of the general 'Box' class.

11

> |

Room

-name: String
-size: String

/

-label: String
-contents: String

ToyBox BookBox ClothesBox
-toys: List -books: List -clothes: List

Figure 1.6: Class Diagram for Organizing Your Room
1.5.2.3 Sequence Diagrams
Sequence Diagrams show how objects in a system interact with each other in a particular
sequence. They help in understanding the flow of messages between objects over time.
Interactions:
e open(}: User opens each box.
» put toys/books/clothes inside: User puts the respective items into the

boxes.
¢ close(): User closes each box.
User Toys Box Books Box Clothes Box
open()
open()
open()

put toys inside

put bodks inside

put clothes inside

close()

close()
i 9

close()

Figure 1.7: Sequence diagram of the user organizing items into labeled boxes
12

K:
1.5.2.4 Activity Diagrams

Activity Diagrams illustrate the flow of activities or steps in a process. They are useful for
modeling the logic of complex operations.

Example: In a restaurant management system, an activity diagram can represent the
process from 'Order Placement' to 'Food Preparation’ and finally to 'Order Delivery'.

D

Order Placemeant

|

Food Preparation

> |

Re-Prepare Food . Food Ready? Yes Order Delivery
[+]

L

Figure 1.8: Activity Diagram with Decision and Connector Symbol

1.5.3 Using UML to Represent Software Systems
UML can be used in various stages of software development to improve understanding

and communication. Here are some practical applications:
» Planning: Use UML diagrams to map out the system's requirements and design

beforewriting any code.
+» Development: Developers refer to UML diagrams to understand the structure and

relationships within the system.
» Communication: UML diagrams help team members, including non-technical

stakeholders, to understand how the system works.
1.6 Introduction to Design Patterns
Design pattern are common solutions to problem in software development, they act like
templates to help make coding easier, faster and more consistent.
1.6.1 Commonly Used Design Patterns
Below are some of the most widely recognized design patterns:

13
K

K >

1.6.1.1 Singleton Pattern

The Singleton Design Pattern is a way to make sure that a specific object or resource is
created only once in a program and reused whenever needed.

1.6.1.2 Factory Pattern

The Factory Design Pattern is like having a special workshop that knows how to create
different products, but you don't need to worry about the details of how those products
are made. Instead, you just tell the factory what you need, and it gives you the finished
product.

1.6.1.3 Observer Pattern

The Chserver Design Pattern is like having a group of people who are interested in
getting updates from one particular source. Whenever something important happens,
the source automatically notifies all the interested people. It's a way to keep things in
syncwithout everyone constantly checking for updates.

1.6.1.4 Strategy Pattern

The Strategy Design Pattern is like having a toolbox full of different tools, each designed
for a specific job. When you face a problem, you can pick the right tool from the box
based on the task at hand.

Class Activity
Identify a real-world scenario around you where you can apply one of these
design patterns. Share your examples in the next class.

1.6.2 Applications of Design Patternsin Software Design
Design patterns are widely used in software development to solve common problems
and create robust and maintainable code. They help in:

¢ Reducing code complexity by providing a clear structure.

» Enhancing code reusability by using proven solutions.

¢ Improving communication among developers by providing a common

vocabulary.

Design patterns help create systems that are flexible, maintainable, and easy to
understand.

Many popular software frameworks and libraries are built using
DO YOU:.'~. design patterns. For example, the Model-View-Controller (MVC)
@ pattern is used in web development frameworks like Ruby on Rails
and Angular.

K >

1.7 Software Debugging and Testing
Debugging and testing are important steps to make sure that software works correctly.
They help find and fix errors so the software meets requirements and run as expected.

1.7.1 Debugging

Debugging is the process of finding and fixing bugs or errors in a software.Bugs are
errors or mistakes in the software that cause it to behave unexpectedly. Identifying bugs
involves observing the software's behavior and finding the source of the problem. Once
identified, bugs requires making changes to the code to correct the error.

Tools and Best Practices
There are various tools and best practices for debugging,including:
¢ Debuggers: Software tools that help programmers find bugs by allowing
them to step through code, inspect variables, and monitor program
execution.
¢ Print Statements: Adding print statements in the code to display the values
of variables at different points in the program.
e Code Reviews: Having other developers review your code to spot potential
€errors.

1.7.2 Testing

Testing is the process of evaluating the software to ensure it meets the requirements and
works as expected. The testing process typically follows a hierarchy that begins with
smaller components and gradually progresses to the entire system, including user
acceptance. The main types of testing inthis hierarchy are given below.

1.7.2.1 Unit Testing

Unit Testing is the first level of testing, where individual components or modules of the
software are tested in isolation. Each "unit" is a small, testable part of the software, such
as a function or method. The primary goal of unit testing is to verify that each
componentworks correctly according to its design and performs as expected.

Class Activity
Try writing a unit test for a simple function in your favorite programming
language.

1.7.2.2 Integration Testing

After unit testing, Integration Testing is performed to evaluate the interaction between
different components or modules. While unit testing focuses on isolated units,
integration testing ensures that these units work together correctly when combined.

15
K >

K >

This type of testing checks for interface errors, data flow between modules, and other
integration-related issues.

1.7.2.3 System Testing

System Testing is a higher level of testing where the entire software system is tested as a
whole. At this stage, the software is treated as a complete entity, and testers evaluate its
overall functionality, performance, security, and compliance with specified
requirements.

1.7.2.4 Acceptance Testing

Acceptance Testing is conducted to determine whether the software is ready for release.
It is often performed by the end-users or clients to ensure that the software meets their
expectations and requirements.

DO YOU' /. Acceptance testing is sometimes called User Acceptance Testing
KNOW? w (UAT) because it is often done by the end-users of the software.

1.8 Software Development Tools

Software development tools are programs or applications that assist in various stages of
software creation. They are used to write, edit, test, debug, and manage code, ensuring
that software functions correctly and efficiently.

1.8.1 Language Editors

Language editors, also known as code editors, are tools that help developers write and
edit code in different programming languages. Examples include:

= Notepad++: Asimple yet powerful code editor.

= VS Code: A popular editor with many extensions.
1.8.2 Translators
Translators are tools that convert code written in one programming language into
another language that the computer can understand. Translators convert high-level
programming languages (like Python) into machine language (binary code) that
computers can execute. It has two types:

« Interpreters: Translate code line-by-line (e.g., Python interpreter).

+ Compilers: Translate the entire code at once {e.g., GCC for C/C++).
1.8.3 Debuggers

Debuggers are tools that help developers find and fix errors (bugs) in their code. The
purpose of debuggers is to allow developers to test their code and identify where errors
occur. Examples include:

GDB: GNU Debugger for C/C++.
Visual Studio Debugger: Integrated with Visual Studio IDE.

16
K

K >

1.8.4 Integrated Development Environments (IDEs)
IDEs are comprehensive software suites that provide all the tools needed for software
development in one place. IDE integrates various development tools like editors,
compilers, debuggers, and version control systems to streamline the development
process. An IDE offers a unified interface where developers can write, test, and debug
their code efficiently. Examples include:

« Visual Studio: Popular for NET and C++ development.

« PyCharm: Preferred for Python development.
1.8.5 Online and Offline Computing Platforms
These platforms provide environments where developers can write, run, and test their
code,

« Online Platforms: Cloud-based platforms accessible via the internet (e.g.,

Repl.it, Gitpod).
« Offline Platforms: Local development environments on a computer (e.g., local
installations of IDEs).

1.8.6 SourceCode Repositories
Source code repositories are platforms where developers can store, manage, and track
changes to their code. Repositories help in version control, allowing multiple developers
to work on the same project without conflicts. Examples include:

+ GitHub: Popular platform for open-source projects.

+ Bitbucket: Used for both private and public repositories.

K

Q.1: Multiple Choice Questions
1. Primary purpose of the Software Development Life Cycle (SDLC) is to:
a) design websites
b} deliver high-quality software within time and cost estimates
¢) manage database systems
d) create hardware components
2. A type of requirement specifying system performance:
a) Functional Requirements b} Non-Functional Requirements
¢) Technical Requirements d) Operational Requirements
3. Role of a framework in the context of SDLC is to:
a) write code from scratch
b) provide a structured foundaticn with predefined components and
architectures
€) manage hardware
d) perform manual testing
4. Software development model involving short cycles or sprints:
a) Waterfall Model b} Agile Methodology
¢) Lean Software Development d) Scrum

5. Crucial aspect of comprehensive project planning:
a) Understanding the project scope and tasks
b) Deciding the project’s colour scheme
¢) Hiring a large development team
d) Ignoring potential risks
6. Factor that does not influence’cost estimation of a software project:
a) Scope of the project b) Technology stack
¢) Number of meetings held d) Operational costs
7.The purpose of Use.Case Diagrams is to:
a) document the system's architecture
b) identify and document the system's functional requirements
¢) illustrate the database schema
d) define the system's user interface design
Short Questions
1. Differentiate between functional and non-functional requirements.
2. Explain why the testing phase is important in the Software Development Life
Cycle (SDLC), and provide two reasons for its significance.

3. lllustrate the concept of continuous integration in Agile Methodology and
18

> |

K

> |

discuss its importance in software development.

4. Evaluate the main steps involved in risk assessment and management, and
assess theirimportance in a software project.

5. Explainthe purpose of a Use Case Diagram in software development.

6. Compare and contrast a Sequence Diagram with an Activity Diagram,
highlighting the key differences.

7. Describe the Factory Pattern and explain how it differs from directly creating
objects, with an example.

Long Questions

1. Design a flowchart for a user registration process in-a software application.
Outline its key steps.

2. Imagine you are managing a project to develop a simple mobile application.
Describe how you would use the Agile Methodology to handle this project.

3. Consider an online banking system. Create a Use Case Diagram to show the
interactions between customers, bank staff, and the system.

4. You are developing a food delivery application. Create a Sequence Diagram to
show the process of placing an order, from the customer selecting items to the
delivery of the order.

5. Discuss the importance of software development tools in the software
development process.

a) Explain the role of language editors, translators, and debuggers in creating
and maintaining software.

b} Provide examples of each tool and describe how they contribute to the
efficiency and accuracy of software development.

