يشيما للوالرَّحْلِن الرَّحِيْم

(In the Name of Allah, the Most Merciful, the Most Compassionate.)

BIOLOGY 11

PUNJAB EDUCATION, CURRICULUM, TRAINING AND ASSESSMENT AUTHORITY

Table of Contents

Biodiversity and Classification	1
2 Bacteria and Viruses	33
3 Cells and Subcellular Organelles	48
Molecular Biology	91
5 Enzymes	127
6 Bioenergetics	140
Structural and Computational Biology	167
8 Plant Physiology	177
9 Human Digestive System	202
10 Human Respiratory System	215
1) Human Circulatory System	231
12 Human Skeletaland Muscular Systems	255
	1

This textbook is based on Updated/Revised National Curriculum of Pakistan 2023 and has been approved by Punjab Education, Curriculum, Training and Assessment Authority (PECTAA).

All rights are reserved with PECTAA.

No part of this textbook can be copied, translated, reproduced or used for preparation of test paper, guidebooks, keynotes and helping books.

Authors:

- Muhammad Nadeem Asghar
- Prof. Dr.Farkhanda Manzoor
- Prof. Dr. Atif Yaqub
- Dr. Muhammad Imran Sohail
- Dr. Robeela Shabbir
- Zunnorain Ahmed

Editors:

- Prof. Dr. Abdul Rauf Shakoori
- Dr. Robeela Shabbir
- Zunnorain Ahmed

Experimental Edition

Director (Curriculum & Compliance):

Aamir Riaz

Incharge ArtCell:

Aisha Sadiq

Composer:

Irfan Shahid

Supervised by:

Dr. Robeela Shabbir

Deputy Director (Compliance-Sciences)

Syed Saghir-Ul-Hussnain Tirmizi

Designer:

Sameira Ismail

Date of Printing	Edition	Impression	Copies	Price
	Experimental	1 st		8

STUDENTS'LEARNING OUTCOMES

After studying this chapter, the students will be able to:

- Discuss the meaning of the terms species and speciation.
- Describe the classification of organisms into three domains: Archaea, Bacteria and Eukarya.
- Describe the classification of organisms in the Eukarya domain into the taxonomic hierarchy of kingdom, phylum, class, order, family, genus and species.
- Outline the characteristic features of the kingdoms Monera, Protoctista, Fungi, Plantae and Animalia.
- Outline how viruses are classified.
- Define the terms ecosystem and niche.
- Explain the different levels at which blodiversity can be assessed.
- Explain the importance of random sampling in determining the biodiversity of an area.
- Describe and use suitable methods to assess the distribution and abundance of organisms in an area.

Biodiversity and classification are fundamental concepts in biology that provide insight into the vast array of life forms on Earth and their evolutionary relationships. In this chapter, we will study the biodiversity, highlighting the variety of life at genetic, species, and ecosystem levels. We will also explore the principles and methods of biological classification, which scientists use to organize and categorize organisms.

1.1- THREE-DOMAIN SYSTEM OF CLASSIFICATION

According to the five-kingdom classification system, proposed by American ecologists Robert Whittaker in 1969, all organisms were divided into five kingdoms i.e., Monera, Protista, Fungi, Plantae,

and Animalia. According to this system, the kingdom Monera included prokaryotes while all the other four kingdoms included eukaryotes. In 1990, American microbiologist Carl Woese suggested that there are two separate groups of prokaryotes i.e., Archaea and Bacteria. On the basis, he classified living organisms into three domains i.e., domain Archaea, domain Bacteria and domain Eukarya. According to his three-domain

The evolutionary relationship among organisms is called **phylogeny**. The diagram to show phylogeny, is called phylogenetic or evolutionary tree.

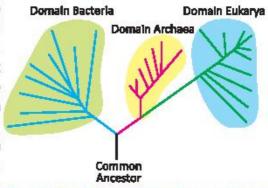


Figure 1.1: Evolutionary tree of the three domains

system, domain Archaea and domain Bacteria contain prokaryotes but they differ in a number of features.

Now biologists believe that Archaea and Bacteria evolved independently from some common ancestor. Molecular evidence suggests that archaea are more closely related to eukaryotes than to bacteria. In other words, Eukarya evolved from Archaea, after archaea split off from the Bacteria (Figure 1.1).

Domain Archaea

In the five-kingdom system, this domain was included in kingdom Monera. The name Archaea comes from the Greek *archaios* ("ancient"). They are prokaryotes which discreed from bacteria in year, arcient times.

diverged from bacteria in very ancient times. Individual archaeans range from 0.1 µm to over 15 µm in diameter. Some form aggregates or filaments

Archaea were initially classified as a group of bacteria, and were called archaebacteria.

up to 200 μm in length. They occur in various shapes, such as spherical, rod-shape, spiral, lobed, or rectangular. Archaea reproduce asexually by binary or multiple fission, fragmentation, or budding. Mitosis and meiosis do not occur in archaea.

How are Archaea unique?

Cell Membrane:

Their cell membrane contains lipids with ether-linkage between glycerol and fatty acid chains. The fatty acid chains are branched. That's why their cell membranes are more resistant to extreme conditions.

On the other hand, bacteria and Eukarya have membrane lipids with fatty acids attached to glycerol by ester linkages. The fatty acid chains are unbranched.

Cell Wall Composition:

The cell walls of archaea lack cellulose and peptidoglycan. Instead, they contain distinct polysaccharides and proteins. Some archaea have pseudopeptidoglycan.

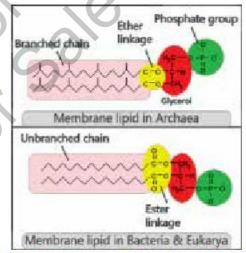


Figure 1.2: Difference in membrane lipids of Archaes and other organisms

On the other hand, bacterial cell walls contain peptidoglycan, a polymer consisting of sugars and amino acids that provides structural support. In Eukarya, the cell walls, if present, are composed of cellulose (in plants) or chitin (in fungi).

Genetic Differences:

Archaea share several genetic sequences and regulatory features with eukaryotes, highlighting their closer evolutionary relationship.

Metabolism:

Archaea have unique metabolic processes like methanogenesis (production of methane), which is not found in bacteria or Eukarya.

On the other hand, bacteria exhibit metabolic pathways, including photosynthesis, nitrogen fixation, and fermentation. In

Significance of Archaea

The archaeans which live in high acidity and alkalinity are a source of enzymes that can function under harsh conditions. For example, the enzymes of DNA replication have been extracted from such archaeans. These enzymes can work best at high temperatures and allow rapid doning of DNA in laboratory. Similarly, the methanogen archaeans are a vital part of sewage treatment. They carry out anaerobic digestion and produce biogas. Acidophillic Archaea are used to extract metals such as gold, cobalt and copper from ores in mineral processing.

Eukarya, the metabolic processes are often more complex and include cellular respiration, photosynthesis (in plants and algae), and various forms of fermentation.

Major Groups of Archaea

The major groups of Archaea include Methanogens (produce methane as a metabolic byproduct), Halobacteria (live in extremely saline In humans, intestinal gas is largely the result of the metabolism of methanogens.

environments), Thermococci (found in hot environments), and Thaumarchaeota (involved in nitrogen cycle).

Methanogens

Halobacteria

Thermoplasmata

Thermococci

Figure 1.3: Major groups of Archage

Domain Bacteria

In the five-kingdom system, this domain was included in kingdom Monera. They are the true bacteria. They possess several distinct characteristics that differentiate them from other domains i.e., Archaea and Eukarya. Here are the general characteristics of the domain Bacteria:

- **1. Cell Structure**: Like archaea, bacterial possess prokaryotic cell i.e., lack a true nucleus and membrane-bound organelles.
- **2. Cell Wall Composition:** Bacterial have a cell wall composed of peptidoglycan, a unique polymer that provides structural support and shape.
- **3. Genetic Material:** Like Archaea bacteria possess a single, circular chromosome composed of DNA, located in the nucleoid region.
- **4. Plasmids:**Most bacteria have small, circular DNA molecules that can be transferred between bacteria, aiding in genetic diversity and adaptation.

- **5. Reproduction:** Bacteria primarily reproduce asexually through binary fission, a process where a single cell divides into two identical daughter cells.
- **6. Nutritional Modes**: Include autotrophs (self-feeding, e.g., photosynthetic bacteria) and heterotrophs (feeding on organic matter, e.g., decomposers).
- **7. Morphology:** Bacteria exhibit a variety of shapes, such as cocci (spherical), bacilli (rod-shaped), spirilla (spiral-shaped), and vibrios (comma-shaped).
- **8. Arrangement:** Cells may be found singly, in pairs (diplococci), chains (streptococci), clusters (staphylococci), or other arrangements based on species-specific characteristics.
- **9. Flagella:** Many bacteria have one or more flagella, whip-like structures that enable movement.
- **10. Pill and Fimbriae:** These are hair-like structures in some bacteria. They help in attachment to surfaces and in exchange of genetic material with other bacteria.
- 11. **Respiration:** Bacteria can be obligate aerobes, obligate anaerobes, facultative anaerobes, microaerophiles, or aerotolerant anaerobes. Some bacteria perform fermentation to produce energy in the absence of oxygen.
- 12. Extremophiles: Some bacteria thrive in extreme conditions, such as high temperatures (thermophiles), high salinity (halophiles), and low pH (acidophiles).
- **13. Pathogenicity:** Some bacteria cause diseases in humans, animals, and plants, producing toxins or other virulence factors.
- **14. Symblosis:** Many bacteria live in symbiotic relationships with other organisms, including mutualism (both benefit) and commensalism (one benefits, the other is not harmed).

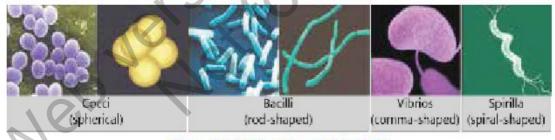


Figure 1.4: Different forms of Bacteria

Major Groups of Bacteria

The domain Bacteria is divided into numerous groups. For example;

- Proteobacteria e.g., Escherichia coli, Rhizobium, Helicobacter pylori.
- Firmicutes e.g., Bacillus subtilis, Lactobacillus, Clostridium botulinum.
- Actinobacteria e.g., Streptomyces, Mycobacterium tuberculosis
- Cyanobacteria e.g., Anabaena, Spirulina.
- Spirochaetes e.g., Treponema pallidum,
- Acidobacteria e.g., Acidobacterium.
- Aquificae e.g., Aquifex pyrophilus.

Domain Eukarya

The domain Eukarya encompasses all organisms with eukaryotic cells, which are fundamentally different from the prokaryotic cells of Bacteria and Archaea. Here are the general characteristics of the domain Eukarya that justify its classification as a separate domain:

- 1. Cell Structure: They possess eukaryotic cells with true nucleus enclosed by a nuclear membrane. Cells have membrane-bounded organelles e.g., mitochondria, chloroplasts (in plants and algae), endoplasmic reticulum, Golgi apparatus, lysosomes, and peroxisomes. Cells also have cytoskeleton i.e., a complex network of microtubules, microfilaments, and intermediate filaments that provides structural support, enables cell movement, and facilitates intracellular transport.
- **2. Genetic Material:** Their DNA is organized into multiple linear chromosomes within the nucleus. DNA is associated with histone proteins, which help in the organization and regulation of genetic material.
- **3. Reproduction:** Most eukaryotes undergo sexual reproduction involving meiosis and fertilization, leading to genetic diversity. Some eukaryotes can also reproduce asexually through mitosis, producing genetically identical offspring.
- 5. Complex Cellular Organization: In multicellular eukaryotes, cells differentiate into specialized types forming tissues and organs with specific functions.
- **6. Evolutionary Relationships:**Eukaryotes are believed to have originated through endosymbiosis, where certain prokaryotic cells (such as mitochondria and chloroplasts) were engulfed by a host cell, leading to a symbiotic relationship.

1.2- TAXONOMIC HIERARCHY

The classification of living organisms is organized into a hierarchical system that allows scientists to categorize and understand the relationships between different forms of life. This system includes several levels, known as **taxa** (singular: taxon), each representing a rank in the biological classification system. The primary levels of this hierarchy are: kingdom, phylum, class, order, family, genus, and species. Below is a detailed description of each level.

1. Domain

It is the highest level of classification. Currently, there are three domains: Archaea, Bacteria, and Eukarya.

2. Kingdom

The kingdom is one of the highest taxonomic ranks, just below domain. It groups together all forms of life that share fundamental characteristics.

 Example: In the domain Eukarya, there are several kingdoms, such as Animalia (animals), Plantae (plants), Fungi (fungi), and Protista (protists).

3. Phylum

Phylum is the next level of classification below kingdom. Organisms within a phylum share a basic body plan and significant structural features.

 Example: In the kingdom Animalia, the phylum Chordata includes all animals with a notochord, such as mammals, birds, reptiles, amphibians, and fish.

4. Class

Class further divides organisms within a phylum based on more specific common traits.

 Example: Within the phylum Chordata, the class Mammalia includes all mammals, which are characterized by having hair and mammary glands.

5. Order

Order categorizes organisms within a class based on additional shared characteristics and evolutionary history.

Example: Within the class Mammalia, the order
 Primates includes humans, monkeys, and apes,
 characterized by their large brains and opposable thumbs.

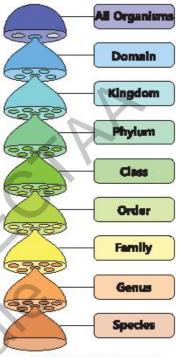


Figure 1.5: Texonomic hierarchy

6. Family

Family groups organisms within an order that are even more closely related, sharing more precise common attributes.

 Example: Within the order Primates, the family Hominidae includes great apes and humans.

7. Genus

Genus is a more specific rank within a family, grouping species that are very closely related and often visually similar.

 Example: Within the family Hominidae, the genus Homo includes humans and our closest extinct relatives.

8. Species

Species is the most specific level of classification, representing a single type of organism. Members of a species can interbreed and produce fertile offspring.

 Example: Within the genus Homo, the species Homo sapiens refers to modern humans.

Taxonomic Rank	Human (<i>Homo saplens</i>)	Sparrow (Passer domesticus)	Onion (Ailium cepa)
Domain	Eukarya	Eukarya	Eukarya
Kingdom	Animalia	Animalia	Plantae
Phylum	Chordata	Chordata	Angiosperms
Class	Mammalia	Aves	Monocots
Order	Primates	Passeriformes	Asparagales
Family	Hominidae	Passeridae	Amaryllidaceae
Genus	Homo	Passer	Allium
Species	Homo sapiens	Passer domesticus	Allium cepa

1.3- SALIENT FEATURES OF KINGDOMS OF DOMAIN EUKARYA

Eukarya consists of kingdoms protista, fungi, plantae and animalia. It includes all eukaryotes which consist of complex, eukaryotic cells containing nucleus and other membrane-bound organelles.

1. Kingdom Protista

Kingdom Protista includes eukaryote which are unicellular or colonial or filamentous or simple multicellular. Certain protists are parasitic and cause diseases like malaria (Plasmodium), amoebic dysentery (Entamoeba histolytica), and sleeping sickness (Trypanosoma).

Simple multicellular means that they do not have multicellular sex organs. There are three types of protists.

Major Groups or Protists

- The group Protozoa includes animal-like protists. They are unicellular and are heterotrophic. Examples are Paramecium, Amoeba, Plasmodium, and Trypanosoma.
- The group Algae includes plant-like protists. They have cell walls made of cellulose. They have chlorophyll and are autotrophs. Examples include Euglena diatoms.
- The groups Myxomycota and Oomycota include Fungi-like protists. They have hyphae-like structure and are saprophytic e.g., slime molds and water molds.

Figure 1.6: Common protists

2. Kingdom Fungi

Fungi are eukaryotic, heterotrophic organisms that are unicellular or multicellular. Their cells are covered by cell wall made of chitin (a polysaccharide). Fungi get nutrients in a unique way. They

Some fungliare used in the production of bread, cheese and beer. Others have medicinal properties, such as penicillin, an antibiotic derived from the fungus Penicillium.

do not ingest food like animals and some protists. They absorb food from surroundings. Examples are mushrooms, rusts, smuts and molds.

Major Groups of Fungi

The following are the major groups of fungi:

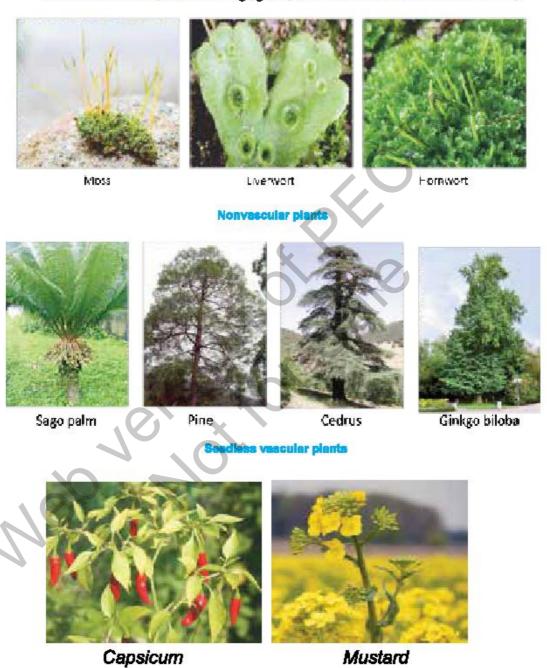
 Zygomycota includes the fungi which lack septa in their hyphae. Examples are Rhizopus (bread molds), which grow on moist bread, fruits etc.

There are about 100,000 known species of fungi. Most of the Ascomycetes are found in lichens and some are found in mycorrhizae.

- Ascomycota includes thelargest groups of fungi. They have septate hyphae.
 Examples include common molds, morels, truffles, cup fungi, Neurospora and yeasts.
- Basidiomycota includes the fungi with septate hyphae. Examples are mushrooms, toadstools, puffballs, jelly fungi and bracket/shelf fungi, rusts and smuts.

Figure 1.7: Common fungi

3. Kingdom Plantae


It includes plants which are eukaryotic, multicellular organisms with cell walls made of cellulose. They are autotrophic and prepare food through photosynthesis. All plants develop from embryos. Examples are mosses, ferns, conifers and flowering plants.

Major Groups of Plants

Plants are divided into two major groups:

- Nonvascular plants or bryophytes lack conducting tissues (xylem and phloem).
 Examples include liverworts, hornworts, and mosses.
- Vascular plants have conducting tissues. Vascular plants are of two types i.e., seedless plants (e.g., ferns) and seed plants (e.g., conifers and flowering plants).
 Seed producing vascular plants are Gymnosperms (naked seeds) i.e., conebearing, no flowers or fruits (e.g., Pine and Spruce) whereas Anglosperms

(flowering plants) are the most diverse plant group which produce seeds enclosed in fruits (Monocots e.g., grass, com and Dicots rose and sunflower).

Seed plants
Figure 1.8: major groups of Kingdom Plantae

Domain	Bacteria	Archaea	Eukarya			
Kingdom	Me	onera	Protista	Fungi	Plantae	Animalia
Cell Type	Prokaryotic	Prokaryotic	Eukaryotic	Eukaryotic	Eukaryotic	Eukaryotic
Nuclear Envelope	Absent	Absent	Present	Present	Present	Present
Presence of Cell Wall	In ell	in all	In some	in Ali	in all	Absent
Composition of Cell Wall	Peptidoglycan	Various chemicals	Various chemicals	Chitin	Cellulose and other polysaccharides	No Cell wall
Mode of Nutrition	Autotroph or heterotroph	Autotroph or heterotroph	Photosynthetic or heterotroph, or combination	Absorptive	Photosynthetic autotrophs	Ingestive heterotrop h
Multi - cellularity	Absent	Absent	Absent in most forms	Present in most forms	Present in all forms	Present in all forms

4. Kingdom Animalia

This kingdom of eukaryotes includes animals which are eukaryotic, multicellular and heterotrophic. They develop from embryos. They ingest food and digest it within their bodies.

1.4- CLASSIFICATION OF KINGDOM ANIMALIA

The kingdom Animalia is broadly divided into the following phyla.

1- Phylum Portfera

This phylum contains sponges. Most of them are marine while some live in freshwaters.

Leucosolenia and Euplectella (Venus' flower basket)

are marine sponges. Spongilla is a common freshwater sponge.

A commercial sponge is prepared by drying, besting, and washing a sponge until all cells are removed.

Sponges do not have tissue level organization. Most sponges are asymmetrical but some have radial symmetry. They do not have nervous system. There are numerous pores in body wall called ostia. Through ostia, water enters the body. The larger pore through which water leaves the body is called **osculum**. The outer layer of body is made of thin, flat cells called pinacocytes. The second layer is jelly-like and is called mesohyle. It contains amoeboid cells. The third layer, which lines the spongocoel, is made of **choanocytes** or collar cells. They have skeleton in the form ofmicroscopic needles of calcium carbonate or silica. Most sponges reproduce asexually by budding or regeneration. Some sponges form resistant capsules, called gemmules containing masses of amoeboid cells. When parent sponge dies, it releases its gemmules. In favourable environment, amoeboid cells come out of the **gemmules** and form a new sponge.

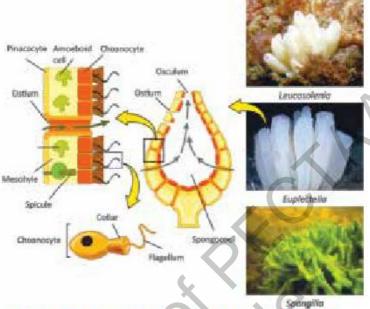


Figure 1.9: Representative aponges and general structure

2- Phylum Cnidaria

Almost all cnidarians are marine, although a few are found in freshwater e.g., jellyfish and *hydra*. Most cnidarians are colonial e.g., *obelia*, corals, sea fans etc. Most of them are sessile e.g., *hydra*, coral, *obelia* etc. Some cnidarians are motile e.g., jellyfish.

They are radially symmetrical animals and are diploblastic. It means that the adult body contains two tissue layers i.e., the epidermis and the gastrodermis, derived from ectoderm and endoderm respectively. Between the epidermis and gastrodermis, a jelly-like mesoglea is present. It contains amoeboid cells that have originated either from ectoderm or endoderm. They possess special cells, called cnidocytes. A cnidocyte contains a special organelle, called nematocyst. Nematocysts defend the body and captures prey. Cnidarians have a blind-ending cavity, called gastrovascular cavity or enteron. It opens outside

Corals are colonial chidarians. They produce hard exoskeleton of Calcium carbonate. The skeleton makes coral islands and coral reefs.

Coral reef

by a single opening, the mouth. Mouth also acts as anus for the removal of undigested material. Mouth is surrounded by a series of projections, called tentacles. This types of digestive system in which there is a single opening for the entry of food and removal of undigested matter, is called **sac-like** digestive system.

The nervous system is in the form of a network of neurons in the body wall. There is no central nervous system (brain and spinal cord). They do not have respiratory, excretory and transport systems. There are two body forms in cnidarians i.e., polyps and medusae. Polyps are cylindrical and are attached to a substrate at the aboral end. They reproduce asexually. Medusae are umbrella-like and are free-swimming. They reproduce sexually.

Figure 1.10: Representative chidarian

3- Phylum Platyhelminthes

They are called "flatworms". They are mostly unsegmented and body is soft and dorsoventrally compressed. Most of them are free-living e.g., planaria. Some are endoparasites of humans and other animals e.g., liver fluke, tapeworm, and blood-fluke.

They are triploblastic i.e., the tissues of the body are derived from three embryonic layers; ectoderm, mesoderm and endoderm. Tape worm belonging to They are accelomates. A loose connective tissue called parenchyma fills space between the body wall and body

organs. They have bilateral symmetry with distinct left and right sides as well as dorsal and ventral sides. They

phylum Platyhelminthes are segmented.

do not have respiratory and circulatory (transport) systems. They have a network of tubular protonephridia. These tubules have numerous branches. Each branch ends in a bulb-like cell called flame cell. The cilia of flame cells beat to suck surrounding fluid into the tubules. The tubules filter the waste materials from fluid and release them out of body wall through a small opening called a nephridiopore. They have a network of neurons. There are cerebral ganglia in the anterior end (head). These ganglia are attached to longitudinal nerve cords that are interconnected across the body by transverse branches. Most free-living flatworms have two simple eyespots at their anterior end. Flatworms reproduce asexually by "fission" in which the animal constricts in the middle and then divides into two pieces. Each piece then regenerates the missing part. The sexually reproducing flatworms are hermaphrodites (bisexual).

Figure 1.11: Representative flat worms

4- Phylum Nematoda

They are roundworms with elongated worm-like (round) body with pointed ends. Some roundworms are free-living (in water and soil) e.g., Caenorhabditis elegans. Many are parasites e.g., ascarls, hookworm, pinworm, and whipworm.

The pseudocoelomates are classified in seven phyla. These phyla are grouped as a unit called Aschelminths. Phylum Nematoda is the representative phylum of this group.

They are triploblastic, bilateral symmetrical, and possess unsegmented body. They are pseudocoelomates because they possess a false body cavity called pseudocoelom filled with fluid. They possess tube-like digestive system. It consists of an alimentary canal with two openings; mouth at anterior end and anus at posterior end. The parasitic roundworms have simplified digestive systems. Two main types of excretory systems exist: the glandular type with a single renette cell leading to a duct and pore, and the tubular type with an H-shaped structure of ducts. They possess a network of neurons in body. There is a nerve ring around the pharynx, which is attached to four longitudinal nerve cords. They have raised hair-like sense organ called sensory papillae, present on lips. They do not have defined respiratory and circulating systems. They are unisexual i.e.; male nematodes have testes and female nematodes have ovaries.

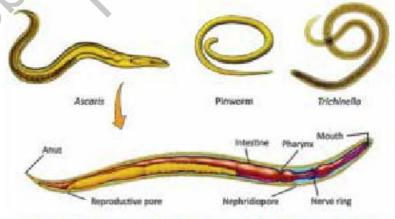


Figure 1.12: Representative round worms and general structure

5- Phylum Mollusca

Molluscs have soft un-segmented bodies. They are widely distributed in natural habitats. Some of them are exclusively aquatic e.g., mussels, octopus and oyster. The others live in moist places e.g., land snail.

Molluscs are triploblastic and have bilateral symmetry. They possess true coelom. Among coelomates, they are included in the group called protostomes. Their body can be divided into three

In open-type system, the blood does not retain the vessel. Rather, it directly bathes cells in tissue spaces (sinuses).

parts i.e., head, visceral mass (contains organs of digestion, excretion and reproduction), and foot (attached with visceral mass). They have an epithelial envelope around the visceral mass, called as mantle. The space between mantle and visceral mass is called as mantle cavity. In most molluscs, the outer surface of mantle secretes a calcareous shell. All molluscs (except bivalvia) have a rasping tongue-like organ, called radula. All of them (except cephalopods) have open blood circulatory system. Their heart consists of a single ventricle and two auricles. They possess tube-like digestive system in which the gut has two openings, i.e., mouth and anus. Their excretory system consists of paired tubular structures called nephridia. Wastes are gathered from sinuses and discharged into coelom around the heart. The nephridia open in this coelom. They have tiny cilia around their openings, which move the fluid from coelom into the nephridia. Nephridia discharge waste materials in mantle cavity, from where they are expelled out. In molluscs, gills work for the exchange of gases. They have three pairs of interconnected ganglia present in the head, visceral mass and foot. The ganglia are interconnected by means of nerve cord. They move with the help of muscular foot. Most of the molluscs are motile while some are sessile. Most molluscs are unisexual.

Figure 1.13: Representative molluecs and general structure

6- Phylum Annelida

Annelids are commonly called segmented worms. They are found in marine water (e.g., nereis), freshwater (e.g., leech), and in damp soil (e.g., earthworm). Some annelids are ectoparasites e.g., leeches.

Their body is divided transversely into a number of similar parts called segments. Internally, the segments are separated from each other by cross walls called septa. Each segment

The segments are indicated externally by constrictions of the body surface in the form of little rings ("Annelid" means "little ring").

is provided with its own circulatory, excretory and neural elements. This type of segmentation in body is called metameric segmentation. Annelids are bilaterally symmetrical and triploblastic. They are protostome coelomates. Annelids have special parts called setae. Setae are chitinous bristles which are absent in leeches. Their body wall is surrounded by a moist, acellular cuticle secreted by epidermis. They possess tube-like digestive system. The digestive tube is divided into distinct parts, each performing a specific function. The parasitic annelids have simplified digestive system.

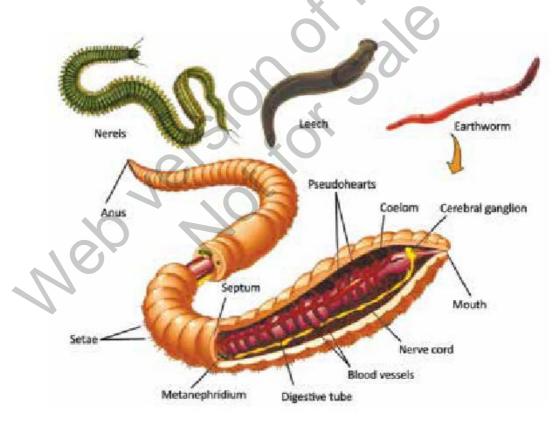


Figure 1.14: Representative annelids and general structure

Their excretory system consists of ciliated, funnel-shaped metanephridia. Each segment has one pair of metanephridia. They possess a closed-type circulatory system. Blood always flows in blood vessels. They have specialized pulsating blood vessels (pseudohearts). Blood of most annelids has respiratory pigment, haemoglobin, dissolved in blood plasma. Gaseous exchange occurs through the skin. There is a cerebral ganglion or brain in the anterior segment. A double, longitudinal ventral nerve cord arises from brain and gives nerves in each segment. Ganglia are also present in each segment. They have tactile receptors, chemoreceptors, balance receptors, and photoreceptors. Some annelids also well-developed eyes with lenses. Most annelids are hermaphrodite (e.g., earthworm, leech) and some are unisexual (e.g., nereis).

7- Phylum Arthropoda

Arthropods are the most successful of all invertebrates. They are found in every type of habitat. Many of terrestrial members can also fly.

They are triploblastic, bilateral symmetrical, protostome coelomates. The coelom is reduced and is present only around reproductive and excretory systems. They have jointed appendages which are modified for specialized functions e.g., running, crawling swimming, capturing prey, respiration, reproduction etc. In different arthropods, the jointed appendages around the mouth, are modified in different ways and form mouth parts. The body is segmented. Some segments are fused to form specialized body regions called tagmata. These include head, thorax and abdomen. They have exoskeleton or cuticle, which is secreted by the epidermis of body wall. It is made chiefly of chitin. In young arthropods, exoskeleton is shed from time to time. After shedding the exoskeleton, the animal grows at a fast rate and then re-secretes new exoskeleton. This process is called ecdysis or molting.

They possess open-type circulatory system. Most of the time, blood flows in hemocoel, which is derived from an embryonic cavity called blastocoel. Their blood is colourless as it is without haemoglobin and is known as haemolymph. Most arthropods possess a respiratory system that consists of air tubes called trachea. Main tracheal tubes open out through openings called spiracles. Aquatic arthropods respire through gills. Arthropods have tube-like digestive system. The alimentary canal is divided into different parts. Their excretory system comprises of Malpighian tubules. These are narrow tubules projected from the alimentary canal, attached at the junction of midgut and hindgut. The nitrogenous wastes are excreted in the form of solid uric acid crystals. They have well-developed central nervous system with three fused pairs of cerebral ganglia (brain) in head. There is a double ventral nerve cord which has ventral ganglia in each segment. Smaller nerves arise from ventral ganglia in each segment. They have well developed compound eyes and antennae. They can swim, crawl or fly depending on their habitat. They are unisexual.

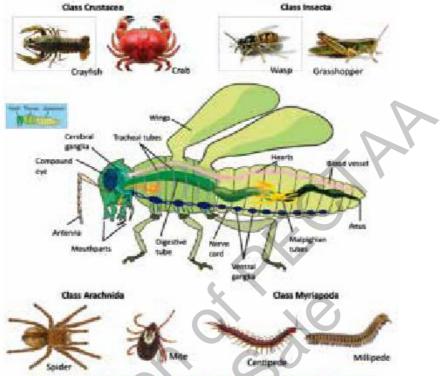


Figure 1.15: Representative arthropods and general structure

Important arthropods include insects (e.g., mosquito, butterfly, moth, wasp, beetles, grasshopper), crabs, lobsters, prawn, shrimps, crayfishes, spider, tick, mite, scorpion, centipedes and millipedes.

8- Phylum Echinodermata

They are exclusively marine animals. Some are flattened like biscuit (e.g., cake urchin), some are star-shaped with short arms (e.g., sea star or starfish), some are globular (e.g., sea urchin), some are star-shaped with long arms (e.g., brittle star), and some are elongated (e.g., sea cucumber).

They are triploblastic and deuterostomes coelomates. Their larvae are bilateral symmetrical but the adults show radial symmetry. In their radial symmetry, the body parts are arranged in five, or multiple of five, around an oral-aboral axis. They possess a calcareous endoskeleton in the form of plates called ossicles. These plates are derived from mesoderm but come out of skin also and make spines on the skin. They have water-vascular system consisting of tubes and spaces present in the coelom. A ring canal surrounds the mouth. It opens outside through a sieve-like plate, called madreporite. Five (or a multiple of five) radial canals branch from the ring canal. Many lateral canals emerge from each radial canal and each lateral canal ends at a tube foot. Tube feet are the extensions of water vascular system. The tube feet extend and attach with some substrate. When water is drawn back from the sucked tube feet, they

contracts and body is pulled. Echinoderms possess tube-like digestive system. The mouth leads to oesophagus, stomach, intestine and rectum. The rectum opens out through anus.

There are no specialized organs for respiration and excretion. They possess a poorly developed nervous system made of a nerve net, a nerve ring, and five (or multiple of five) radial nerves. Most sensory receptors are distributed over the surface of the body and tube feet. Asexual

Many echinoderms are able to regenerate the lost parts, and some, especially sea stars and brittle stars, drop various parts when they are under attack and then regenerate the lost parts.

reproduction involves division of the body, followed by the regeneration of each half. Echinoderms are unisexual.

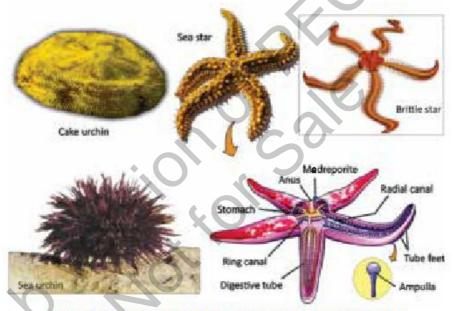


Figure 1.15: Representative echinoderms and general structure

10- Phylum Chordata

Chordates are bilateral symmetrical, triploblastic, deuterostome coelomates. The following four characteristics are unique to chordates, present at some stage in development.

- 1. Notochord: All chordates develop notochord during embryonic life. It is a rod-like semi rigid body of vacuolated cells. It extends throughout the length of body between gut and dorsal nerve cord. The lower chordates retain this notochord throughout life. While, in vertebrates it is partly or entirely replaced by vertebral column, during development.
- 2. Pharyngeal slits: These are a series of openings in the lateral walls of pharynx. All chordates develop paired gill slits in embryonic stage. In some chordates (e.g.,

Amphioxus and fishes), these develop into gills. In some (e.g., most amphibians), these are functional for some period in their life history. In others (e.g., reptiles, birds and mammals), these are modified for various purposes.

- **3. Tubular nerve cord:** In all chordates, a tubular nerve cord runs through the longitudinal axis of the body, just dorsal to the notochord. It expands anteriorly as a brain.
- **4. Post anal tail:** All chordates develop a tail, posteriorly beyond the anal opening. Some chordates retain it throughout life while others degenerate it during embryonic life.

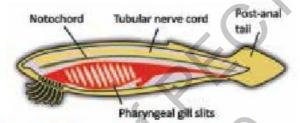


Figure 1.17: Diagnostic characters of chordates

Phylum chordata includes two major groups i.e., invertebrate chordates and vertebrates.

- Subphylum Urochordata includes the invertebrates chordates in which notochord and nerve cord are present only in their free-swimming larvae. Sea squirts are the examples of urochordates.
- Subphylum Cephalochordata includes the invertebrate chordates in which notochord persists throughout life. Amphioxus is a common cephalochordate.

Figure 1.19: Amphioxus

Flaure 1.18: Sea squirts

 Vertebrates: They have a vertebral column and cranium. Vertebrates are divided into seven classes which are placed into two groups.

1.5- CLASSIFICATION OF VERTEBRATES

Vertebrates are divided into five groups.

1. Group Pisces:

Members of Class Pisces are aquatic vertebrates, meaning they live exclusively in freshwater or marine environments. Their bodies are streamlined or fuelform (spindle-shaped) which helps in reducing water resistance during swimming. The body is covered with scales (dermal in origin), such as placoid, cycloid, or ctenoid scales, depending on the type of fish. Skeleton can be cartilaginous (as in sharks and rays) or bony (as in most modern fish). Respiration takes place through gills. Gills are usually covered by an operculum in bony fishes. They have a closed circulatory system. The heart is two-chambered (one auricle and one ventricle). Blood circulation is single and incomplets. Locomotion is achieved with the help of paired and unpaired fins. Fins also provide balance and direction during swimming. Mostly are oviparous (egg-laying), but some are viviparous (give birth to young ones). Fertilisation may be external (common in bony fishes) or Internal (common in cartilaginous fishes). Pisces are ectothermic (cold-blooded), meaning their body temperature varies with the environment.

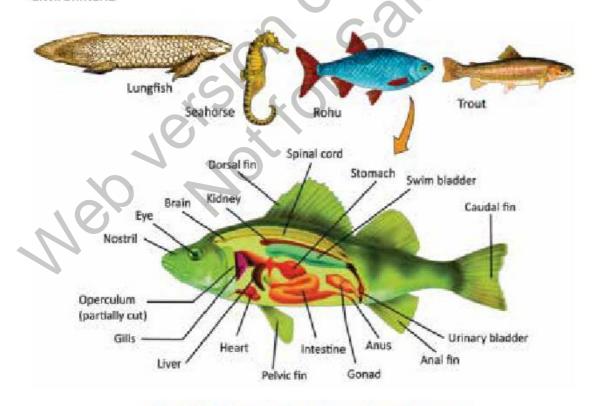


Figure 1.20: Representative fishes and general structure

	Class	Key Characteristics	Examples
Agnathane (Jawless Fishes)	Class Myxini	Mouth with four pairs of tentacles; five to fifteen pair of pharyngeal slits.	Hagfish
	Class Cephalispidomorphi	Sucking mouth, seven pair of pharyngeal slits.	Lamprey
Gnathostomes (Jawed Fishes)	Class Chondrichthyes	Cartilaginous skeleton, tail fin with large upper lobe and lack swim bladder or lungs.	Sharks, skates, ratfish
	Class Osteichthyes	Bony skeleton, pneumatic sac function as lungs or swim bladder.	Lungfish, Coelacanths

2. Class Amphibia

They have bony endoskeleton. Unlike fishes, amphibians have a neck. The first vertebra (cervical vertebra) moves against the back of skull and allows the skull to nod vertically. Their skin is smooth (without scales) and moist. It helps in gas exchange, temperature regulation, and absorption and storage of water. Their heart is **double-circuit**. It is three-chambered, with two atria and one ventricle. They respire by gills in the larval stage and by lungs and skin in the adult stage. They depend on external heat source and so are **ectotherms**. They cannot regulate their body temperature and cannot maintain it constant. So, they are **polkliothermic** animals and hibernate in winter. Salamander, newts, and mud puppies are tailed amphibians. Frogs and toads are tail-less amphibians, and caecilians are leg-less amphibians. Amphibians are unisexual. Fertilization is usually external.

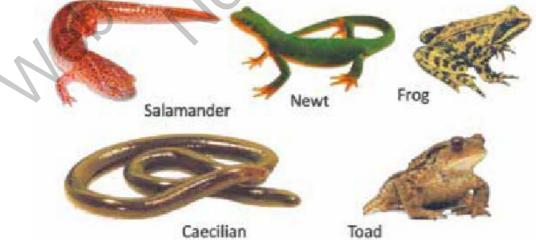


Figure 1.21: Representative amphibians

3. Class Reptilla

Reptiles are the first animal group that possess amniotic eggs. Amniotic eggs make protective extra-embryonic membranes i.e., amnion, allantois, and chorion. These membranes protect the embryo from drying out, nourish it and enable it to develop on land. The amniotic eggs also contain a large amount of volk, the primary food supply for the embryo. Such eggs have abundant albumin, which provides additional nutrients and water. The amniotic eggs are also covered with leathery calcareous shell which is

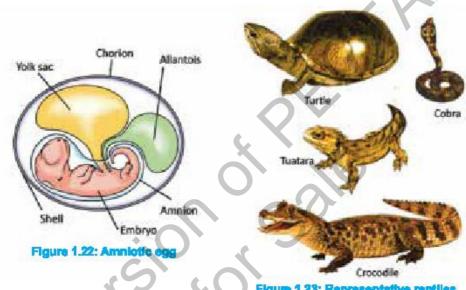


Figure 1.23: Representative reptiles

partly permeable to gases but not to water.

Reptiles have dry scaly skin. The bony endoskeleton of reptiles is harder than amphibians. The skull is longer than amphibians. In reptiles, first two cervical vertebrae (atlas and axis) allow more movements of head. In their heart, ventricle is incompletely partitioned, into left and right ventricles.

Reptiles, like amphibians, are ectothermic and use external heat source for thermoregulation. They cannot keep their body temperature at constant, and are polkliotherms. Fertilization is internal. They are oviparous (egg-laying). The presentday reptiles are lizards, snakes, tuatara and crocodiles.

4. Class Aves

Birds have a covering of feathers on the body. Feathers form the flight surfaces that provide lift and aid in steering. Feathers also prevent heat and water loss. Birds are endotherms. It means that they can obtain heat from cellular processes. A source of internal heat allows them to maintain a nearly constant core temperature. The animals who can maintain their core temperature are known as homeotherms.

The body of birds is streamlined and spindle shaped. The forelimbs are modified into wings. Their bones are light due to large air spaces. A lighter sheath called bill replaces the teeth. The sternum (chest bone) bears a large, bone called keel for the attachment of flight muscles.

In many birds a diverticulum of the oesophagus, called **crop**, is a storage structure that allows birds to quickly ingest large quantities of food. A region of stomach, called **gizzard**, has muscular walls to crush food. Their heart is four-chambered, with complete separation of atria and ventricles. Birds have much developed nervous system. Vision and hearing are important senses for most birds.

Their external nares open in pharynx through nasal passage ways. The pharynx leads to trachea and then

Bills and tongues are modified for a variety of feeding habits and food sources.

Figure 1.24: Representative birds

bronchi. The organ of voice, called **syrinx**, is situated at the lower end of trachea. The bronchi lead to a complex system of **air sacs** that occupy much of the body and even extend to some of the bones. The air sacs connect to lungs, which are made of small air tubes called **parabronchi**.

Like reptiles and mammals, birds have **amnlotic** eggs with large amounts of yolk and albumin. Such eggs are also covered with leathery shell. In birds, fertilization is internal and development is external i.e., they are **oviparous**. Some birds have secondarily lost the power of flight and are called **running birds** e.g., ostrich, kiwi, rhea, cassowary, and emu. The flying birds include pigeon, parrot, crow, eagle, robin etc.

5. Class Mammalla

Mammalia includes the group of vertebrates which are nourished by milk from the mammary glands of mother, and have hair on their body. Mammals have skin glands, developed from epidermis. Sebaceous (oil) glands secrete oily secretion. Sudoriferous (sweat) glands release watery secretions used in evaporative cooling. Mammary glands are functional in female mammals. Most mammals have two sets of teeth during their lives i.e., milk teeth and permanent teeth. External ear or pinna is present. The middle ear has a chain of three bones i.e., incus, malleus and stapes. Mammals are endothermic and homoeothermic animals. They possess four-chambered

heart. They have a muscular diaphragm that separates the coelom into thoracic and abdominal cavities. They have well developed voice apparatus in the form of larynx (with vocal cords) and epiglottis. In mammals, fertilization is internal. There are three groups of mammals:

Mammals are monotremes, placental and marsupials.

- Monotremes are egg-laying mammals that lay eggs in which whole development of their embryo proceeds. They are oviparous e.g., Duckbill platypus and echidna (spiny anteater).
- Marsupials have a pouch (marsupium) on the abdomen of female. These mammals give birth to immature young ones which complete their development in mothers' pouch. Opossum and kangaroo are the examples of such mammals.



Figure 1.28: Representative pouched mammels

3. Placental mammals are the most advanced mammals. During development, a structure called placenta, is formed between mother's uterus wall and foetus body. The foetus is nourished and wastes from foetus are removed through this placenta. They give birth to young ones i.e., they are viviparous Dolphin, rat, monkey, bat, elephant and human are some examples of placental mammals.

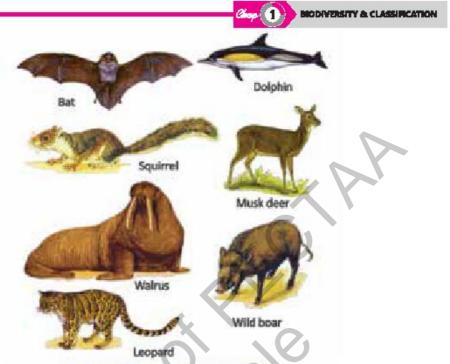


Figure 1.27: Representative outherlans

1.6- CLASSIFICATIONOF VIRUSES

Viruses are not considered organisms because they are acellular i.e.; not made of cells. They lack any of the characteristics of the three domains of life and are not classified in any domain and kingdom.

A virus consists of nucleic acid (DNA or RNA) surrounded by a protein coat. They cannot run any

They are also not considered living organisms. Prions are composed of protein only and Viroids are composed of circular RNA only, Both these particles cause infectious diseases in certain plants.

Prions and viroids are also acellular.

metabolism and depend upon the host cell (including plants, animals, and bacteria) to replicate and synthesize their proteins.

Viruses are classified based on several characteristics, including their genetic material, replication strategy, morphology, and the hosts they infect. The classification of viruses follows guidelines established by the International Committee on Taxonomy of Viruses (ICTV).

Classification on the basis of Host Range

- Animal Viruses: Infect animals, including humans. Examples: Influenza virus, Rabies virus.
- 2. Plant Viruses: Infect plants. Examples: Tobacco mosaic virus, Potato virus X.
- 3. Bacteriophages: Infect bacteria. Examples: T4 phage, Lambda phage.
- 4. Archaea Viruses: Infect archaea. Examples: Sulfolobus spindle-shaped virus.

Classification on the basis of Morphology

- 1. Helical Viruses: These have a capsid with a helical structure surrounding the nucleic acid. Examples: Tobacco mosaic virus, Rabies virus.
- 2. Icosahedral Viruses: These have a capsid with a symmetrical icosahedral shape. Examples: Adenoviruses, Herpesviruses.
- Complex Viruses: These have a complex structure, often with a combination of icosahedral and helical features, and sometimes additional structures like tails. Examples: Bacteriophages (viruses that infect bacteria).
- 4. Enveloped Viruses: These have an outer lipid envelope derived from the host cell membrane, surrounding their capsid. Examples: Influenza virus, HIV.
- Non-enveloped (Naked) Viruses: These lack an outer lipid envelope and consist only of a capsid enclosing the nucleic acid. Examples: Poliovirus, Adenovirus.

Figure 128: Basic shapes of viruses

Classification on the basis of Genetic Material

- DNA Viruses: Viruses with DNA as their genetic material. This DNA can be singlestranded (ssDNA) or double-stranded (dsDNA). Examples include:
- dsDNA viruses: Adenoviruses (cause respiratory infections), Herpesviruses (cause herpes, chickenpox).
- ssDNA viruses: Parvoviruses (cause gastroenteritis).
- RNA Viruses: Viruses with RNA as their genetic material. This RNA can be singlestranded (ssRNA) or double-stranded (dsRNA). Examples include:
- ssRNA viruses: Coronaviruses (cause COVID-19), Influenza viruses (cause flu).
- dsRNA viruses: Rotaviruses (cause gastroenteritis).

Classificationon the basis of Replication Strategy

- Positive-Sense RNA Viruses: The RNA genome is directly translated into proteins by the host cell's ribosomes. Examples include Poliovirus, Hepatitis C virus.
- 2. Negative-Sense RNA Viruses: The RNA genome is transcribed into mRNA by a viral RNA polymerase before translation. Examples include Rabies virus, Ebola virus.
- 3. Reverse Transcribing Viruses: These viruses replicate through a DNA intermediate using the enzyme reverse transcriptase. They can have RNA or DNA genomes. Examples include:
- RNA genome: Retroviruses like HIV (cause AIDS).
- DNA genome: Hepadnaviruses like Hepatitis B virus.

1.7- BIODIVERSITY

Biodiversity, a term derived from "biological diversity," refers to the variety of life forms present in different ecosystems, encompassing the diversity of species, genes, and ecosystems. It represents the richness and variability of living organisms and their interactions with each other and their environments.

Ecosystem:

An ecosystem is a dynamic and interactive system composed of living organisms and their physical environment. It includes all the biotic factors as well as the abiotic factors.

Niche:

A niche refers to the role or function of an organism or species within an ecosystem. It includes its habitat, its interactions with other organisms (predation, competition, and symbiosis), and its role in energy flow within the ecosystem.

Biodiversity Assessment Levels

The assessment of biodiversity involves multiple levels, each providing unique insights into the complexity of life.

Species Level:At the species level, biodiversity is assessed by identifying and counting the different species present within a given area. Species diversity includes not only the number of species but also their relative abundance and distribution.

Genetic Level: At the genetic level, biodiversity refers to the variety of genetic information contained within all individual organisms of a species. This genetic diversity is crucial for the adaptability and survival of species, enabling them to cope with environmental changes and challenges.

Ecosystem Level: At this level, biodiversity assessment includes the range of habitats, from forests and wetlands to grasslands and deserts. It involves understanding how different ecosystems function and how they contribute to overall ecological health.

Importance of Random Sampling in Determining Biodiversity

Random sampling is a fundamental technique in ecological studies for assessing biodiversity within a specific area. This method is crucial for several reasons:

- Minimizes Bias: It ensures that every part of the study area has an equal chance of being sampled, which provides a more accurate representation of the overall biodiversity.
- Provides Reliable Estimates: Random sampling allows for the collection of data that can be statistically analyzed to estimate species richness, abundance, and distribution.
- Facilitates Comparisons: It enables comparisons between different areas or habitats by providing standardized methods of data collection.
- 4. Enhances Representativeness: By covering different parts of the study area, random sampling ensures that the sample represents the diversity of the entire area.

5. Supports Conservation Efforts: Accurate biodiversity assessments through random sampling are essential for identifying areas of high conservation value and for monitoring changes in biodiversity over time.

Methods to Assess Biodiversity

Various methods are employed for assessing the distribution and abundance of organisms in an area:

Methods to Assess Distibution

1. Quadrat Sampling

It involves dividing the study area into a grid and sampling within randomly selected squares (quadrats). This method is particularly useful for studying plant populations or sessile organisms. For example, in a forest, a researcher might lay out quadrats of a fixed size and record the presence or absence of each plant species within these quadrats.

2. Transect Sampling

It involves laying out a line or strip (transect) across the study area and recording species at regular intervals along this line. This method is effective for studying the distribution of species across environments. For example, in a coastal zone, a transect can be laid from the high tide line to the low tide line, to record the types and abundance of intertidal organisms.

3. Aerial Surveys

Aerial surveys use aircraft or drones to observe and record the distribution of organisms over large areas. For example, it can be used to track the distribution of bird species across a large wetland area or to monitor large mammal populations in savannas.

Figure 1.29: Methods to assess distribution of organisms

Methods to Assess Abundance

- 1. **Point Counts:** Point counts involve observing and recording the number of individuals of a species from a fixed point over a specified period. This method is commonly used for birds and other mobile animals.
- **2. Mark-Recapture:** It involves capturing, marking, and releasing individuals of a species, then recapturing them later to estimate population size and density. This method is useful for animals that are difficult to count directly.

- **3. Quadrat Counts:** In this method, researchers use quadrats to count the number of individuals of a species within each quadrat and then infer these counts to estimate overall abundance.
- **4. Capture-Recapture Methods:** These models account for variables such as varying capture probabilities and movement between areas.
- **5. Remote Sensing:** Remote sensing uses satellite or drone imagery to assess the abundance and distribution of species, particularly for large-scale or inaccessible areas.

1.8- SPECIES AND SPECIATION

Species

The term "species" is a fundamental concept in biology. A species is generally defined as a group of individuals that can interbreed and produce fertile offspring under natural conditions. Members of the same species share common characteristics and genetic makeup, which distinguishes them from individuals of other species.

Identification of species by using physical traits and similarities can sometimes be problematic due to the existence of cryptic species - organisms that appear similar but are genetically distinct. To address this, German-American biologist, Ernst Mayr, emphasized reproductive isolation as the key criterion. According to this concept, species are groups of interbreeding natural populations. Members of different species do not typically mate or produce viable, fertile offspring.

Speciation

Speciation is the evolutionary process by which new species arise from a common ancestor. It involves the accumulation of genetic changes that lead to reproductive isolation between populations. There are several mechanisms of speciation, for example:

1. Allopatric Speciation

It occurs when a population is geographically separated into two or more isolated groups. These groups experience different environments and evolve independently. Over time, the accumulated differences can become significant enough to prevent interbreeding, even if the geographical barrier is removed. An example is the speciation observed in Darwin's finches on the Galápagos Islands, where different populations adapted to diverse environments.

2. Peripatric Speciation

It involves a small, isolated population at the edge of a larger population. The small population undergoes rapid evolutionary changes, leading to divergence from the original population. An example can be seen in island species that evolve from a small founding population.

3. Parapatric Speciation

This occurs when populations are adjacent to each other but occupy different environments along gradient. Gene flow between the populations is limited, and they evolve adaptations their to specific environments. Over time, this can lead to reproductive isolation. An example is species "Anthoxanthum grass odoratum", which exhibits different adaptations to varying soil conditions across 2 aradient. leading reproductive isolation in different soil types.

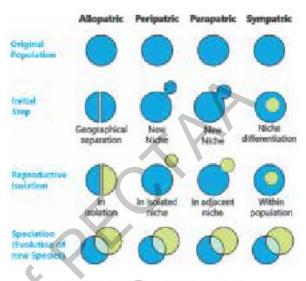


Figure 1.30: Modes of speciation

4. Sympatric Speciation

In this form, new species arise within the same geographical area without physical barriers. Sympatric speciation often occurs through mechanisms such as polyploidy (where an organism has multiple sets of chromosomes) or niche differentiation (where different subpopulations exploit different resources). For instance, certain plants can undergo polyploidy, leading to immediate reproductive isolation and the formation of new species.

SECTION 1:MULTIPLE CHOICE QUESTIONS

- 1. Which domain of life is characterized by organisms that often inhabit extreme environments and have cell membranes with ether-linked lipids?
 - (a) Bacteria
- (b) Archaea
- (c) Eukarya
- (d) Protista
- 2. What is a key difference between the domains Bacteria and Archaea?
 - (a) Bacteria have membrane-bound organelles, while Archaea do not.
 - (b) Bacterial cell walls have peptidoglycan, while Archaeal cell walls do not have it.
 - (c) Archaea are only found in extreme environments, while Bacteria are not.
 - (d) Bacteria are all unicellular, while Archaea include multicellular organisms.
- 3. Which of the following kingdoms includes organisms that are mostly unicellular, eukaryotic, and can be autotrophic or heterotrophic?
 - (a) Fungi
- (b) Animalia
- (c) Plantae
- (d) Protoctista

4. In which kingdom are organisms predominantly multicellular, autotrophic, and have cell walls made of cellulose? (a) Animalia (b) Fungi (c) Plantae (d) Protoctista 5. Which of the following criteria is commonly used to classify viruses? (a) Their ability to cause specific diseases (b) The type of nucleic acid they contain (c) The colour of the virus particles (d) Their mode of transmission 6. Which virus group includes viruses such as Coronaviruses and influenza viruses? (a) Double-stranded DNA viruses (b) Single-stranded DNA viruses (c) Double-stranded RNA viruses (d) Single-stranded RNA viruses At which level of biodiversity assessment do we evaluate the variety of different species within a particular habitat or ecosystem? (a) Genetic diversity (b) Ecosystem diversity (c) Species diversity (d) Functional diversity 8. Which method is best suited for assessing the distribution of species across a gradient of environmental conditions within a single geographical area? (b) Point Counts (a) Quadrat Sampling (c) Transect Sampling (d) Remote Sensing 9. Which of the following statements is true regarding the concept of a species? (a) A species is always defined by its physical characteristics alone. (b) Different species can interbreed and produce fertile offspring. (c) Members of the same species are reproductively isolated from members of other species. (d) The concept of a species can be defined solely based on genetic similarity. 10. What type of speciation occurs when populations are geographically separated by a physical barrier? (a) Sympatric Speciation (b) Parapatric Speciation (c) Allopatric Speciation (d) Peripatric Speciation **SECTION 2: SHORT QUESTIONS** 1. What are the three domains of life and how do they differ in terms of cellular structure? 2. Describe one key feature that differentiates Archaea from Bacteria. 3. How do sponges reproduce asexually? 4. Differentiate the following: (i) Sac like and tube-like digestive system (ii) Polyps and medusae (iii) Urochordata and cephalochordate (iv) Ectotherms and endotherms

(vi) Gymnosperms and angiosperms.

(v) Marsupial and placental mammals

- 5. Which kingdom is characterized by organisms with chitin in their cell walls and that are mostly decomposers?
- 6. What type of speciation occurs when populations are geographically separated?
- 7. What is the role of genetic drift in the process of speciation?
- 8. What is the primary method used to assess species distribution along an environmental gradient?
- 9. Which level of biodiversity assessment involves evaluating the variety of ecosystems in a region?

SECTION 3: LONG QUESTIONS

- Compare and contrast the domains Archaea and Bacteria and discuss how these differences reflect their evolutionary histories.
- Explain the concept of a species according to the biological species concept. How does this definition help in understanding species boundaries and the process of speciation? Provide examples to illustrate your points.
- 3. Describe the major groups of Kingdom Protista nd Kingdom Fungi.
- 4. Describe the general characteristics of following animal phyla.
 - (i) Phylum Cnidaria

(ii) Phylum Platyhelminthes

(iii) Phylum Mollusca

- (iv) Phylum Arthropoda
- (v) Phylum Echinodermata
- 5. Describe the general characteristics of phylum Chordata.
- 6. Write notes on the three groups of mammals.
- 7. Discuss the mechanisms of allopatric and sympatric speciation.
- 8. Outline the major classification systems for viruses based on their structural features and replication methods. Discuss the significance of these classifications in virology.
- 9. Explain the different levels at which biodiversity can be assessed. How do these levels contribute to our understanding of biological diversity and conservation efforts?
- 10. Discuss the importance of random sampling methods in ecological studies.
- 11. Describe the concept of an ecosystem and niche.

INQUISITIVE QUESTIONS

- 1. How are viruses classified based on their nucleic acid content and replication method?
- 2. What may be the drawback in the definition of species according to the biological species concept?
- 3. How does biodiversity help maintain balance in an ecosystem?