

Physics FSC Part 2 Online MCQ's Test

Sr	Questions	Answers Choice
1	The first theory about the structure of an atom was introduced by	A. Neil Bohr B. Einstein C. Compton D. Rutherford
2	A charged particle enters in a strong magnetic field its K.E.	A. Remain constant B. Increases C. Decreases D. Increases then decreases
3	The device in the circuit that consume electrical energy are known as.	A. Dissipaters B. Generator C. Load D. Motors
4	Both Xenon and cesium have	A. 33 isotopes B. 34 Isotopes C. 36 Isotopes D. 35 Isotopes
5	The induced emf in a coil is proportional to:	A. Magnetic flux through the coil B. Rate of change of Magnetic flux through the coil C. Area of the coil D. Product of magnetic flux flux and area of the coil
6	Xc =	A. 1/2πfcB. 2πfcC. 2π/fcD. fc/2π
7	There is no charge in A and Z of any radioactive element by the emission of.	A. Alpha particle B. Beta particle C. Gama particle D. X- rays
8	Which one is not a crystalline solid.	A. Zinc B. Copper C. Nylon D. None of these
9	Marie Curie and Pierre Curie discovered.	A. Uranium B. Uranium and Radium C. Polonium and radium D. Radium
10	The most suitable metal for making permanent magnet is.	A. Iron B. Aluminium C. Steel D. Copper
11	Materials can be identified by measuring their	A. Mass B. Half life C. Both a and b D. None of a,b,c
12	The background radiation to which we are exposed, on the average is.	A. 1 mSv per year B. 2 mSv per year C. 3 mSv per year D. 4 mSv per year
13	DC generator by william Sturgeon in:	A. 1894 B. 1961 C. 1834 D. 1961
14	Light emitting diodes are made from semiconductors.	A. Silicon B. Germanium C. Carbon D. Gallium arsenide
15	In Pakistan the frequency of A.C. supply is.	A. 50 Hz B. 60 Hz C. 45 Hz

		D. 70 Hz
16	Disintegration of photon on striking a nucleus into an electron and positron is known as.	A. Annihilation of matterB. Compton effectC. Pair productionD. Photo electric effect
17	Photodiode is used for:	A. Detection of current B. Detection of heat C. Detection of light D. Both a &
18	In Wilson cloud chamber, if tracks are thick, straight and continuous, then particle is	A. a-particles B. ß-particles C. Y-rays D. All
19	Boher proposed his atomic model in:	A. 1910 B. 1911 C. 1912 D. 1913
20	Natural rubber is an example of:	A. Crystalline solids B. Amorphous solids C. Polymeric solids D. None of above