

## MDCAT Chemistry Chapter 7 Chemical Equilibrium Online Test

| Sr | Questions                                                                                                                | Answers Choice                                                                                                                                                                                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | One of the best applications of Hess's law to calculate the lattice energy of ionic compound is                          | A. Measurement of enthalpy change in a calorimeter<br>B. Studying of first law of thermodynamics<br>C. Measurement of a heat of formation of a compound<br><b>D. Born-Haber cycle</b>                                                        |
| 2  | The value of $\Delta V$ being very small. The term $P\Delta V$ can be neglected for process involving                    | A. Liquid and gas<br>B. Solids and gases<br><b>C. Liquid and solid</b><br>D. None of these                                                                                                                                                   |
| 3  | What is not correct about $\Delta H_f$                                                                                   | A. It is always negative<br>B. Its value gives an idea about the relative stability of reactants and the products.<br>C. Its value can be greater or less than zero<br>D. Value depends upon nature of bonds                                 |
| 4  | The lattice energy of NaCl is                                                                                            | A. 787 j/ mole<br>B. 790 kJ/mol<br>C. 780 kJ/ mol<br><b>D. -787 kJ / mole</b>                                                                                                                                                                |
| 5  | Whenever a reaction is endothermic, then it means that                                                                   | A. Heat is transferred system to the surrounding<br>B. Heat is transferred from surrounding to the system<br>C. Heat content of the products is less than that of reactants<br>D. Heat content of the reactants is greater than the products |
| 6  | Decomposition of $H_2O$ is                                                                                               | A. Endothermic reaction<br>B. Nuclear reaction<br>C. Exothermic reaction<br>D. Zero nuclear reaction                                                                                                                                         |
| 7  | How much heat is absorbed by 100 g of water when its temperature decreases from 25°C to 5°C? (heat capacity is 4.2 J/gK) | A. 84,000J<br>B. 2000/4.2J<br>C. -2000/4.2J<br><b>D. -8400J</b>                                                                                                                                                                              |
| 8  | One kilo calorie is equal to                                                                                             | A. 4.184J<br>B. 1000J<br><b>C. 4184J</b><br>D. 1kJ                                                                                                                                                                                           |
| 9  | The enthalpies of all elements in their standard states are                                                              | A. Unity<br>B. always +ve<br>C. always -ve<br><b>D. zero</b>                                                                                                                                                                                 |
| 10 | For an endothermic reaction, enthalpy of reactants                                                                       | A. Is smaller than that of the products<br>B. Is greater than that of the products<br>C. Must be greater or smaller than that of the products<br>D. Is equal to that of the products                                                         |
| 11 | The enthalpy change $\Delta H$ of a process is given by the relation                                                     | <b>A. <math>\Delta H = \Delta E + P\Delta V</math></b><br>B. $\Delta H = \Delta E + W$<br>C. $\Delta H = \Delta E - \Delta nRT$<br>D. $\Delta E = \Delta H + P\Delta V$                                                                      |
| 12 | Choose from the followings the correct statement about Born Haber cycle                                                  | A. Born Haber cycle is different from Hess's law<br>B. The energy changes in a cyclic process is not zero<br><b>C. The lattice energy of crystalline substances can be calculated easily</b><br>D. None                                      |

|    |                                                                                                                                                          |                                                                                                                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Which of the following has positive value of enthalpy                                                                                                    | A. Neutralisation<br>B. Atomization<br>C. combustion<br>D. All of the above                                                                   |
| 14 | Hess's law is analogous to                                                                                                                               | A. Law of heat summation<br>B. law of increasing entropy<br>C. Law of heat exchange<br>D. 1st law of thermodynamics                           |
| 15 | If internal energy of the system is increased                                                                                                            | A. Change in state of the system may occur<br>B. Temperature of the system may rise<br>C. Chemical reaction may take place<br>D. All of these |
| 16 | Change in enthalpy ( $\Delta H$ ) of a system can be calculated by                                                                                       | A. $\Delta H = \Delta E - PV$<br>B. $\Delta H = \Delta E + q$<br>C. $\Delta H = \Delta E - q$<br>D. $\Delta H = \Delta E + P\Delta V$         |
| 17 | Which of the following processes has always. $\Delta H = -ve$                                                                                            | A. Formation of compound<br>B. Dilution of a solution<br>C. Dissolution of ionic compound<br>D. Combustion                                    |
| 18 | The measurement of enthalpy change at standard conditions means that we should manage the measurement at                                                 | A. 24°C at 1 atm<br>B. 25°C at 1 atm<br>C. 0°C at 1 atm<br>D. 100°C 1 atm                                                                     |
| 19 | A system absorbs 100 kJ heat and performs 50 kJ work on the surroundings. The increase in internal energy of the system is                               | A. 50kJ<br>B. 100 kJ<br>C. 150kJ<br>D. 5000 kJ                                                                                                |
| 20 | The net heat change in a chemical reaction is the same whether it is brought about in two or more different ways in one or several steps. it is known as | A. Henry's law<br>B. Hess's law<br>C. joule's law<br>D. Law of conservation of energy                                                         |