

Mathematics General Science Test Medium Mode

Sr	Questions	Answers Choice
1	2π is the period of	A. sin□ B. tan□ C. cot□ D. all circular function
2	Question Image	A. sec 5x + c B sec 5x + c
3	The set of real roots of the equation $\log_{(5x+4)}(2x+3)^3 - \log_{(2x+3)}(10x^2 + 23x + 12) = 1$ is	A. {-1} B. {-3/5} C. Empty set D. {-1/3}
4	The parametric equation of a curve are $x = t^2$, $y = t^3$ then	
5	Question Image	D. none of these
6	Question Image	A. 15 B. 9 C. 7 D. 8
7	{0} is a	A. Empty set B. Singleton set C. Zero set D. Null Set
8	The number of terms in the expansion of $(a + b)^9$ is	A. 10 B. 11 C. 9 D. 12
9	A point of a solution regions where two of its boundary lines intersect, is called:	A. Vertex of the solution B. Feasible point C. Point of inequality D. Null point of the solution region
10	Root of the equation 3 ^{x-1} + 3 ^{1-x} = is	A. 2 B. 1 C. 0 D1
11	Question Image	A. 0 B. 1 D. undefined
12	Question Image	A1 B. 0 C. 1 D. undefined
13	If e,e' be the eccentricities of two conics S=0 and S' =0 and if e2 +e'2 =3 then both S and S' can be	A. Hyperbola B. Parabolas C. Ellipses D. None of these
14	The equation of the tangent at vertex to the parabola is $y2 = -8(x-3)$	A. y=0 B. x=3 C. x=1 D. x=5
15	Question Image	A. 0 B. 3 C. 9 D3
16	A monoid (G, *) is said to be group if	A. have identity element B. is commutative C. have inverse of each element D. None of these
17	The negation of a number	A. a relation B. a function C. unary operation

		D. binary operation
3	If p, q, r and in A.P., a is G.M. between p and q and b is G.M. between q and r, then a^2 , q^2 , b^2 are in	A. A.P. B. G.P. C. H.P. D. None of these
	The point is in the solution of the inequality 2x - 3y < 4	A. (0, -2) B. (1, -3) C. (2, 2) D. (3, 0)
)	Question Image	A. quadrant I B. quadrant II C. quadrant III D. quadrant IV