

Ics Part 2 Mathematics Chapter 6 Test Online

Sr	Questions	Answers Choice
1	The graph of the parabola $y^2 = -4ax$ lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
2	An angle in a semi-circle is:	A. 0° B. 90° C. 180° D. 60°
3	The graph of the parabola $x^2 = -4ay$ is symmetric about:	A. x-axis B. major axis C. y-axis D. minor axis
4	The parabola $y^2 = 4ax$ lies in quadrants:	A. I and II B. III and IV C. II and III D. I and IV
5	A line segment joining two distinct points on a parabola is called a _____ of the parabola:	A. Chord B. Vertex C. Focus D. Directrix
6	Question Image	A. a B. $2b$ C. b D. $2a$
7	A circle is of radius 5 cm, the distance of a chord 8 cm long from its center is:	A. 4 cm B. 3cm C. 2.5cm D. 3.4cm
8	The axis of the parabola $x^2 = -4ay$ is:	A. $x = a$ B. $x = 0$ C. $y = a$ D. $y = 0$
9	The number e denotes the _____ of the conic:	A. Directrix B. Vertex C. Focus D. Eccentricity
10	The radius of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	
11	Point (5, 6) lies the circle $x^2 + y^2 = 81$:	A. Outside B. Inside C. On D. None of these
12	Equation of axis of the parabola $x^2 = 4ay$ is:	A. $x = 0$ B. $x = a$ C. $y = 0$ D. $y = a$
13	The center of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	A. $(-g, -f)$ B. $(-f, -g)$ C. $(0, 0)$ D. (g, f)
14	Two real and distinct tangents can be drawn to a circle from any point $P(x_1, y_1)$ _____ the circle:	A. Inside B. On C. Outside D. None of these
15	Question Image	B. 0 C. 4 D. 7
16	The axis of the parabola $y^2 = -4ax$ is:	A. $x = a$ B. $x = 0$ C. $y = a$ D. $y = 0$

17 The opening of the parabola $x^2 = 16y$ is to _____ of the x-axis:

A. Left
B. Upward
C. Right
D. Downward

18 The graph of the parabola $x^2 = -4ay$ lies in quadrants:

A. I and II
B. III and IV
C. II and III
D. I and III

19 If r is the radius of any circle and C its center, then any point $P(x_1, y_1)$ lies outside the circle only if:

A. $|CP| < r$
B. $|CP| = r$
C. $|CP| > r$
D. None of these

20 the focal chord perpendicular to the axis of the parabola is called _____ of the parabola:

A. Directrix
B. Latus rectum
C. Focus
D. Focal chord
