

Physics ICS Part 1 Chapter 10 Online Test

Sr	Questions	Answers Choice
1	If a current is passing through a wire, the magnet lines of fore are.	A. <p>Concentric circles</p> B. <p>Parallel to the wire</p> C. <p>Perpendicular to the wire</p> D. <p>Inclined to the wire</p>
2	The direction of induced current is always so as to oppose the change. Which causes the current. This is the statement of.	A. <p>Lenz's law</p> B. <p>Faraday's law</p> C. <p>Gauss's law</p> D. <p>Joule's law</p>
3	The SI Unit of magnetic flux is.	A. <p>Weber</p> B. <p>N m-1</p> C. <p>N m A-1</p> D. <p>Both a and c</p>
4	A 0.50 T field over an area of 2 m ² which lies at angle of 60 degree to the field, then the magnetic flux is.	A. <p>0.50 weber</p> B. <p>0.866 weber</p> C. <p>0.75 weber</p> D. <p>4 weber</p>
5	A moving charged particle is surrounded by	A. <p>Electric field only</p> B. <p>Magnetic field only</p> C. <p>Both electric and magnetic field</p> D. <p>No field</p>
6	The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional to	A. <p>The particle's charge</p> B. <p>The particle's momentum</p> C. <p>The particle's energy</p> D. <p>The flux density of the field</p>
7	What is induced when there is a relative motion between coil and the magnet.	A. <p>Potential</p> B. <p>emf</p> C. <p>Flux</p> D. <p>Energy</p>
8	Two free parallel straight wires carrying current in the same direction	A. <p>Attract each other</p> B. <p>Repel each other</p> C. <p>Do not affect each other</p> D. <p>Get rotated</p>
9	What is the value of the current in a wire of 10 cm long at the right angle to a uniform magnetic field of 0.5 T weber/m ² when the force acting on the wire is 5 N ?	A. <p>1 A</p> B. <p>100 A</p> C. <p>10 A</p> D. <p>1000 A</p>
10	The SI unit of magnetic induction or flux density is.	A. <p>Tesla</p> B. <p>Gauss</p> C. <p>Ampere</p> D. <p>Weber</p>
11	One of the following quantities that is not affected by the magnetic field is	A. <p>Moving charge</p> B. <p>Change in magnetic flux</p> C. <p>Current flowing in conductor</p> D. <p>Stationary charge</p>
12	Two free parallel straight wires carrying currents in the opposite direction	A. <p>Do not affect each other</p> B. <p>Repel each other</p> C. <p>Attract each other</p> D. <p>Get rotated</p>
13	A current is flowing towards north along a power line. The direction of the magnetic field over the wire is directed towards.	A. <p>East</p> B. <p>South</p> C. <p>West</p> D. <p>North</p>
14	When a charged particle is projected perpendicular to uniform magnetic field, its trajectory is.	A. <p>A circle</p> B. <p>Ellipse</p> C. <p>A helix</p> D. <p>Straight line</p>

15 The work done by a magnetic field for revolving the charged particle q in a circular path will be.

A. Fd
B. Max
C. $Negative$
D. $Zero$

16 The unit of flux density is.

A. $NA^{-1} m^{-1}$
B. $NA m^{-1}$
C. $N m A^{-2}$
D. $Nm A$

17 If the current passing through a wire in a magnetic field is doubled, the magnetic force would become.

A. $Twice$
B. Six times
C. $Five$ times
D. $Four$ times

18 If electric current flows from top towards the bottom through a wire then the direction of lines of force would be .

A. $Parallel$ to the wire
B. $Perpendicular$ to the wire
C. $Clockwise$ around the wire
D. $Anticlockwise$ around the wire

19 The fact that emf produced by motion of a coil across a magnetic field was discovered by

A. $Michael Faraday$
B. $Henry$
C. $Orested$
D. $Both a and b$

20 The current produced when the conductor moves across a magnetic field is called

A. $Electric potential$
B. $Electrostatic induction$
C. $Electromagnetic induction$
D. $Electric polarization$