

Computer Science Ics Part 1 Chapter 4 Online Test

Sr	Questions	Answers Choice
1	What does abstraction mean in computing.	<p>A. <p>Hide data</p></p> <p>B. <p>combine simple</p></p> <p>C. <p>Parts into complex systems</p></p> <p>D. <p>Use high level languages</p></p>
2	What is a queue.	<p>A. <p>Add/remvoe from top</p></p> <p>B. <p>Add/remvoe from both ends</p></p> <p>C. <p>Add at back , remvoe form front</p></p> <p>D. <p>Store items randomly</p></p>
3	What is the purpose of the pop operation in a stack	<p>A. <p>Add an item to the top</p></p> <p>B. <p>Remove the top item</p></p> <p>C. <p>Count the numebr of items</p></p> <p>D. <p>Print the stack</p></p>
4	Which of the following best describes primitive computational structures.	<p>A. <p>Advanced tools</p></p> <p>B. <p>Complex Algorithms</p></p> <p>C. <p>Basic building blocks of computing</p></p> <p>D. <p>High level data types</p></p>
5	The purpose of the inkeywrod used with a Pythonlist	<p>A. <p>Add an item to the list</p></p> <p>B. <p>Remvoes an itemfrom the list</p></p> <p>C. <p>Cheeks if an item exists int he list</p></p> <p>D. <p>Returns the length of the list</p></p>
6	A scenario where a graph data structure is most suitable.	<p>A. <p>Managng a to do list</p></p> <p>B. <p>Modeling a line of customers in a store&nbsp;</p></p> <p>C. <p>Representing connections in a social network&nbsp;</p></p> <p>D. <p>All of the above</p></p>
7	How are lists created in Python.	<p>A. <p>Using parentheses ()</p></p> <p>B. <p>Using square brackets []</p></p> <p>C. <p>Using curly braces {}</p></p> <p>D. <p>Using angle brackets</p></p>
8	What is the dequeu operatin ina queue.	<p>A. <p>Adding an item to th eback</p></p> <p>B. <p>Removing an item from he front</p></p> <p>C. <p>Sorting the queue</p></p> <p>D. <p>Copying the queue</p></p>
9	Which of the following is a difference between trees and graphs.	<p>A. <p>Trees have cycles</p></p> <p>B. <p>Trees have many path</p></p> <p>C. <p>Trees have root ; graph may not</p></p> <p>D. <p>Trees are more flexible</p></p>
10	Which of the following is NOT a primitive computational structure.	<p>A. <p>integers</p></p> <p>B. <p>Loops</p></p> <p>C. <p>Artificial intelligence</p></p> <p>D. <p>Boolean values</p></p>
11	True statemetn about the height of a tree.	<p>A. <p>Number of edges from he root to the deepest node</p></p> <p>B. <p>Number of nodes from the root to the deepest node</p></p> <p>C. <p>Number of children of the root node</p></p> <p>D. <p>Always equal to the number of nodes in the tree</p></p>
12	Why are primitive computationl structures important in computer sciecnce.	<p>A. <p>They reduce memory</p></p> <p>B. <p>They for all software</p></p> <p>C. <p>Only for web dev</p></p> <p>D. <p>Increase hardware cost</p></p>

13	What is the degree of a vertex in a graph.	A. <p>The number of loops</p> B. <p>The number of edges connected to it</p> C. <p>The total number of vertices</p> D. <p>The weight of the vertex</p>
14	The operation used to add an item to a queue	A. <p>Dequeue</p> B. <p>Enqueue</p> C. <p>Remove</p>
15	In which structures can cycles exist.	A. <p>Graph</p> B. <p>Tree</p> C. <p>Stack</p> D. <p>Queue</p>
16	What is a list in Python.	A. <p>Unordered items</p> B. <p>Changeable sequence</p> C. <p>Print function</p> D. <p>Loop type</p>
17	What is the dequeue operation in a queue.	A. <p>Removing an item from the front</p> B. <p>Adding an item to the back</p> C. <p>Sorting the queue</p> D. <p>Copying the queue</p>
18	Which principle does a stack follow.	A. <p>FIFO</p> B. <p>LIFO</p> C. <p>FILO</p> D. <p>LILO</p>
19	Which operation removes an item by its index in a list.	A. <p>Pop()</p> B. <p>delete ()</p> C. <p>Remove()</p> D. <p>clear ()</p>
20	Which node is the starting point of a tree.	A. <p>Leaf node</p> B. <p>Child node</p> C. <p>Root node</p> D. <p>Parent node</p>