

Business Mathematics Icom Part 1 Chapter 5 Online Test

Sr	Questions	Answers Choice
1	Question Image	A. Equal B. Possible C. Not possible D. Zero
2	The order of matrix $[a]$	A. 1×1 B. 2×1 C. 0×1 D. 1×0
3	In a square matrix number of rows and column are	A. Equal B. Now equal C. Greater D. Less then
4	Order of the matrix having m rows and n columns is:	A. $m + n$ B. $m - n$ C. m / n D. $m \times n$
5	$2 \times 10 + 3 \times 10^0 =$	A. 23 B. 24 C. 25 D. 26
6	Any matrix "A" is a symmetric matrix if:	A. $A = -A$ C. $A = A^{t}$ D. $A = -A^{t}$
7	A square matrix whose elements below the main diagonal are all zero is called.	A. Upper triangular matrix B. Lower triangular matrix C. Rectangular D. Row matrix
8	Any matrix "A" is a symmetric matrix if	A. $A = A$ B. $A = A^{t}$ C. $A = -A^{t}$ D. $A = A^{-1}$
9	A square matrix A is said to be singular if	
10	If $Ax = B$ then x is	A. BA^{-1} B. AB C. B/A D. $A^{-1}B$
11	In binary system the base of the system is:	A. 2 B. 5 C. 8 D. 10
12	$A + 0$ is equal to:	A. 0 B. A C. $0 + A$ D. None of these
13	Cramer's rule is used to solve	A. System of quadratic equation B. System of linear equation C. Any system of equation D. None
14	Do $AB = BA$?	A. Never B. Yes C. May or may not D. None of these
15	If $A = [a_{ij}]$, then A^+ is :	A. $[a_{ij}]$ B. $[b_{ij}]$ C. $[a_{ji}]$ D. $[a_{ii}]$
16	If A is a singular matrix then:	A. $A = 0$ B. $ A = 0$ C. $A \neq 0$

17 If A is matrix of order $m \times n$ then to get AB , the matrix B must be order of

- A. $m \times m$
- B. $P \times P$
- C. $m \times P$
- D. $n \times P$

18 Question Image

- A. Unit matrix
- B. Diagonal matrix
- C. Square matrix
- D. Singular matrix

19 In decimal system base of system is:

- A. 2
- B. 5
- C. 8
- D. 10

20 We cannot find the inverse of a:

- A. Square matrix
- B. Diagonal matrix
- C. Triangular matrix
- D. Singular matrix