

Physics FSC Part 2 Chapter 14 Online MCQ's Test

Sr	Questions	Answers Choice
1	The sensitivity of Galvanometer can be increased by:	 A. Increasing C/BAN factor B. Decreasing C/BAN factor C. Increasing angle θ D. All of above
2	e/m=	A. v/Br B. Br/V C. VB/r D. Vr/B
3	The dimensions of magnetic flux are	A. M ¹ L ^{- 2} T ¹ A ¹ B. MLT ⁻² A ⁻¹ C. ML ² T ² A ⁻¹ D. ML ² T ^{- 2} - 3- 4- 3- 3- 3- 3- 3- 3- 4- 3- 4- 3- 4- 3- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5 </td
4	The magnetic field inside solenoid is given:	A. μ _∘ nl ² B. μ _∘ nl C. μ _∘ n/1 ² D. μ _∘ l/n
5	Two parallel wires carrying currents in the opposite direction.	A. Repel each other B. Attract each other C. Have no effect upon each other D. They cancel out their individual magnetic fields.
6	The SI unit of magnetic induction 'B' Tesla is equal to.	A. NA-1m-1 B. Nam-1 C. NA-1 m D. Na2m-1
7	The unit of magnetic induction B is	A. Coulomb B. Ampere C. Coulomb/ampere D. Weber/m ²
8	If a low resistance is connected parallel to a galvanometer then galvanometer is converted.	A. Ammeter B. Voltammeter C. Ohmmeter D. Multimeter
9	A voltmeter is always connected in	A. Parallel B. Series C. Perpendicular D. Straight line
10	Which one of the following resistance is used to convert a Galvanometer into an ammeter.	A. High resistance B. Low resistance in series with galvanometer C. Shunt D. High resistance in series with galvanometer
11	A charged particle enters in a strong magnetic field its K.E.	A. Remain constant B. Increases C. Decreases D. Increases then decreases
12	An ammeter is an electrical instrument which is used to measure.	A. Voltage B. Current C. Resistance D. None
13	The magnetic flux will be max, For an angle of:	A. 0 ° B. 60 ° C. 90 <span ""="" """="" arial,="" font-size:="" ont-fam<="" ont-family:="" sans-serif;="" style="color: rgb(84, 84, 84); font-family: arial, sans-serif; font-size: " td="">

		smail;">` D. 180 °
14	In current carrying long solenoid the magnetic field produced does not depend upon.	A. The radius of solenoid B. Number of turns per unit length C. Current flowing through solenoid D. All of the above
15	An electron moves at 2×10^2 m/sec perpendicular to magnetic field of 2T what is the magnitude of magnetic force:	A. 1 x 10 ⁻⁶ N B. 6.4 x 10 ⁻¹⁷ N C. 3.6 x 10 ⁻²⁴ N D. 4 x 10 ⁶ N
16	The name of the scientist who noted that a compass needle was deflected when placed near the current carrying conductor	A. Henry B. Faraday C. Coloumb D. Oersted
17	When Ohm meter gives full scale deflection it indicates.	A. Zero resistance B. Infinite resistance C. Small resistance D. Very High resistance
18	The sum of electric and magnetic force is called.	A. Maxwell force B. Lorentz force C. Newton's force D. Centripetal force
19	The unit of Magnetic flux is called.	A. weber B. weber/m ² C. NM ⁻¹ A ⁻¹ D. None of above
20	A charged particle having charge 'q' is moving at right angle to magnetic field. The quantity which varies is.	A. Speed B. Kinetic energy C. Path of motion D. angular velocity