

## Physics Fsc Part 1 Chapter 10 Online Test

| Sr | Questions                                                                                                                     | Answers Choice                                                                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Lenz's law deals with the.                                                                                                    | A. <p>Magnitude of induced current</p><br>B. <p>Magnitude of induced emf</p><br>C. <p>Direction of induced emf</p><br>D. <p>Direction of induced current</p> |
| 2  | A moving charged particle is surrounded by                                                                                    | A. <p>Electric field only</p><br>B. <p>Magnetic field only</p><br>C. <p>Both electric and magnetic field</p><br>D. <p>No field</p>                           |
| 3  | The direction of induced current is always so as to oppose the change. Which causes the current. This is the statement of.    | A. <p>Lenz's law</p><br>B. <p>Faraday's law</p><br>C. <p>Gauss's law</p><br>D. <p>Joule's law</p>                                                            |
| 4  | A changing magnetic field produces                                                                                            | A. <p>Electric current</p><br>B. <p>Changing electric field</p><br>C. <p>Magnetic field</p><br>D. <p>Conservative field</p>                                  |
| 5  | The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional to             | A. <p>The particle's charge</p><br>B. <p>The particle's momentum</p><br>C. <p>The particle's energy</p><br>D. <p>The flux density of the field</p>           |
| 6  | Two free parallel straight wires carrying currents in the opposite direction                                                  | A. <p>Do not affect each other</p><br>B. <p>Repel each other</p><br>C. <p>Attract each other</p><br>D. <p>Get rotated</p>                                    |
| 7  | Two free parallel straight wires carrying current in the same direction                                                       | A. <p>Attract each other</p><br>B. <p>Repel each other</p><br>C. <p>Do not affect each other</p><br>D. <p>Get rotated</p>                                    |
| 8  | The number of magnetic lines of force passing through any surface is known as.                                                | A. <p>Magnetism</p><br>B. <p>Electric flux</p><br>C. <p>Magnetic flux</p><br>D. <p>Flux density</p>                                                          |
| 9  | If a current is passing through a wire, the magnetic lines of force are.                                                      | A. <p>Concentric circles</p><br>B. <p>Parallel to the wire</p><br>C. <p>Perpendicular to the wire</p><br>D. <p>Inclined to the wire</p>                      |
| 10 | A current is flowing towards north along a power line. The direction of the magnetic field over the wire is directed towards. | A. <p>East</p><br>B. <p>South</p><br>C. <p>West</p><br>D. <p>North</p>                                                                                       |
| 11 | The motional emf depends upon the.                                                                                            | A. <p>Length of a conductor</p><br>B. <p>Strength of a magnetic field</p><br>C. <p>Speed of the conductor</p><br>D. <p>All of the above</p>                  |
| 12 | Magnetic field is detected by                                                                                                 | A. <p>Ammeter</p><br>B. <p>Galvanometer</p><br>C. <p>Magnetic compass</p><br>D. <p>Avometer</p>                                                              |
| 13 | The e.m.f. produced in the conductor when it moves across a magnetic field is called.                                         | A. <p>Self emf</p><br>B. <p>Motional emf</p><br>C. <p>Mutual emf</p><br>D. <p>Induced emf</p>                                                                |
| 14 | If electric current flows from top towards the bottom through a wire then the direction of lines of force would be .          | A. <p>Parallel to the wire</p><br>B. <p>Perpendicular to the wire</p><br>C. <p>Clockwise around the wire</p><br>D. <p>Anticlockwise around the               |

---

15 The current produced when the conductor moves across a magnetic field is called

A. <p>Electric potential</p>  
B. <p>Electrostatic induction&nbsp;</p>  
C. <p>Electromagnetic induction&nbsp;</p>  
D. <p>Electric polarization</p>

---

16 Total number of magnetic lines of force passing normally through unit area is called.

A. <p>Flux density</p>  
B. <p>Magnetism</p>  
C. <p>Flux</p>  
D. <p>Magnetic flux</p>

---

17 Lenz's law is consistent with

A. <p>Law of conservation of energy</p>  
B. <p>Law of conservation of charge</p>  
C. <p>Law of conservation of momentum</p>  
D. <p>Law of conservation of mass</p>

---

18 The work done by a magnetic field for revolving the charged particle q in a circular path will be.

A. <p>Fd</p>  
B. <p>Max</p>  
C. <p>Nagetive</p>  
D. <p>Zero</p>

---

19 A 0.50 T field over an area of 2 m<sup>2</sup> which lies at angle of 60 degree to the field, then the magnetic flux is.

A. <p>0.50 weber</p>  
B. <p>0.866 weber</p>  
C. <p>0.75 weber</p>  
D. <p>4 weber</p>

---

20 One of the following quantities that is not affected by the magnetic field is

A. <p>Moving charge</p>  
B. <p>Change in magnetic flux</p>  
C. <p>Current flowing in conductor</p>  
D. <p>Stationary charge</p>