

Physics Fsc Part 1 Chapter 10 Online Test

Sr	Questions	Answers Choice
1	The e.m.f. produced in the conductor when it moves across a magnetic field is called.	A. <p>Self emf</p> B. <p>Motonal emf</p> C. <p>Mutual emf</p> D. <p>Induced emf</p>
2	What is the value of the current in a wire of 10 cm long of the right angle to a uniform magnetic field of 0.5 Weber/m ² when the force acting on the wire is 5 N ?	A. <p>1 A</p> B. <p>100 A</p> C. <p>10 A</p> D. <p>1000 A</p>
3	Lenz's law deals with the.	A. <p>Magnitude of induced current</p> B. <p>Magnitude of induced emf</p> C. <p>Direction of induced emf</p> D. <p>Direction of induced current</p>
4	The value of the induced emf is directly proportional to the rate of change of.	A. <p>Magnetic flux</p> B. <p>Electric flux</p> C. <p>Force</p> D. <p>Work</p>
5	A moving charged particle is surrounded by	A. <p>Electric field only</p> B. <p>Magnetic field only</p> C. <p>Both electric and magnetic field</p> D. <p>No field</p>
6	Electrons while moving perpendicularly through a uniform magnetic field are.	A. <p>Deflected towards north pole</p> B. <p>Deflected towards south pole</p> C. <p>Deflected along circular path</p> D. <p>Not deflected at all</p>
7	The SI Unit of magnetic flux is.	A. <p>Weber</p> B. <p>N m-1</p> C. <p>N m A-1</p> D. <p>Both a and c</p>
8	The direction of line of magnetic force can be found by	A. <p>Right hand rule</p> B. <p>Left hand rule</p> C. <p>Hund's rule</p> D. <p>Left and right hand rules</p>
9	Total number of magnetic lines of force passing normally through unit area is called.	A. <p>Flux density</p> B. <p>Magnetism</p> C. <p>Flux</p> D. <p>Magnetic flux</p>
10	The unit of flux density is.	A. <p>NA -1 m-1</p> B. <p>NA m-1</p> C. <p>N m A-2</p> D. <p>Nm A</p>
11	Two free parallel straight wires carrying current in the same direction	A. <p>Attract each other</p> B. <p>Repel each other</p> C. <p>Do not affect each other</p> D. <p>Get rotated</p>
12	The SI unit of magnetic induction or flux density is.	A. <p>Tesla</p> B. <p>Gauss</p> C. <p>Ampere</p> D. <p>Weber</p>
13	The unit NA-1 m-1 is called	A. <p>Weber</p> B. <p>Tesla</p> C. <p>Coulomb</p> D. <p>None of these</p>
14	If a current is passing through a wire, the magnetic lines of force are.	A. <p>Concentric circles</p> B. <p>Parallel to the wire</p> C. <p>Perpendicular to the wire</p>

15 Two free parallel straight wires carrying currents in the opposite direction

A. <p>Do not affect each other</p>
B. <p>Repel each other</p>
C. <p>Attract each other</p>
D. <p>Get rotated</p>

16 The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional to

A. <p>The particle's charge</p>
B. <p>The particle's momentum</p>
C. <p>The particle's energy</p>
D. <p>The flux density of the field</p>

17 The direction of induced current is always so as to oppose the change. Which causes the current. This is the statement of.

A. <p>Lenz's law</p>
B. <p>Faraday's law</p>
C. <p>Gauss's law</p>
D. <p>Joule's law</p>

18 Lenz's law is consistent with

A. <p>Law of conservation of energy</p>
B. <p>Law of conservation of charge</p>
C. <p>Law of conservation of momentum</p>
D. <p>Law of conservation of mass</p>

19 A changing magnetic field produces

A. <p>Electric current</p>
B. <p>Changing electric field</p>
C. <p>Magnetic field</p>
D. <p>Conservative field</p>

20 A 0.50 T field over an area of 2 m² which lies at an angle of 60 degree to the field, then the magnetic flux is.

A. <p>0.50 weber</p>
B. <p>0.866 weber</p>
C. <p>0.75 weber</p>
D. <p>4 weber</p>