

11th Class FSC Mathematics Chapter 4 Test Online

Sr	Questions	Answers Choice
1	If α , β are complex cube roots of unity, then 1 + α^n + β^n = where n is a positive integer divisible by 3:	A. 1 B. 3 C. 2 D. 4
2	The other name of quadratic equation is:	A. linear equation B. 1st degree equation C. 2nd degree equation D. none
3	Question Image	D. i
4	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	A. 1 B. 2 C. 3 D. 4
5	If $4^{x} = 2$, then x equals:	A. 2 B. 1
6	If α , β are the roots of x^2 + kx + 12=0 such that α - β = 1 then K = :	A. 0 B. ±5 C. ±7 D. ±15
7	Question Image	A. linear equation B. Quadraticequation C. cubicequation D. radicalequation
8	Question Image	A. 1 B. 0 C. 2 D. 3
9	Complex roots of real quadratic equation always occur in:	A. conjugate pair B. ordered pair C. reciprocal pair D. none of these
10	No. of ways of solving a quadratic equation:	A. 1 B. 3 C. 2 D. 4
11	How many complex cube roots of unity are there:	A. 2 B. 0 C. 1 D. 3
12	Which one is exponential equation:	A. ax ² + bx + c = 0 B. ax + b = 0 D. 2 ^x = 16
13	If the roots of x^2 - bx + c = 0 are two consecutive integers, then: b^2 - 4ac =	A. 0 B. 1 C1 D. 2
14	Question Image	A. c = 0 B. b = 0, c = 0
15	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the quotient $P(x) + Q(x)$ will produce a polynomial of degree:	A. m. n, plus a quotient B. m - n, plus a remainder C. m ÷ n, plus a factor D. m + n, plus a remainder
16	If a polynomial $P(x) = x^2 + 4x^2 - 2x + 5$ is divided by $x - 1$, then the reminder is:	A. 8 B2 C. 4 D. 5
17	Four fourth roots of 625 are:	A. ±5,±5i B. ±5,±25i C. ±25,±25i

		D. none of these
		A. reciprocal equation
	$3^{2x} - 3^{x} - 6 = 0$ is:	B. exponentialequation
		C. radicalequation
		D. none of these
	One of the roots of the equation $3x^2 + 2x + k = 0$ is the reciprocal of the other, then $k = \dots$:	A. 3
		B. 2
		C. 1
		D. 4
	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the product $P(x)$. $Q(x)$ will be a polynomial of degree:	A. m . n
		B. m - n
		C. m + n
		D. m × n