

Biology Fsc Part 1 Chapter 5 Online Test

Sr	Questions	Answers Choice
1	The loss of globular shape of enzyme is called.	A. Saturation B. Renaturation C. Denaturation D. Flexion
2	The pH at which an enzyme works at maximum rate is called.	A. Maximum pH B. Optimum pH C. Average pH D. Top pH
3	How does a non competitive inhibitor decrease the rate of enzyme catalysed reaction.	A. By changing the free energy change of the reaction B. By acting as a coenzyme for the reaction C. By changing the shape of the enzyme D. By binding the active site of the enzyme
4	The enzyme which catalyses the conversion of glucose to fructose is.	A. Pentose isomerase B. Hexokinase C. Hexoisomerase D. Hexoreductase
5	The induced fit model was modified form of lock and key model was proposed by	A. Daniel Koshland B. Daniel Standford C. Emil Fischer D. Van Neil
6	the enzymes papain is present in	A. Yellow papaya B. Green papaya C. Red papaya D. blue papaya
7	The enzymes of glycolysis are present in	A. Nucleoplasm B. Cytoplasm C. Stroma D. Mitochondrial matrix
8	When food is oxidized in cell, enzymes draw electrons from food molecules and transfer them to.	A. Nicotinamide Adenine Dinucleotide B. Nicotinamide Ganine dinucleotide C. Nicotinamide cytosine dinucleotide D. Nicotinamide Thymine Dinucleotide
9	the energy which works to destabilize existing chemical bonds is called.	A. Deactivation energy B. Activation energy C. Ionization energy D. Potential energy
10	If an enzyme solution is saturated with substrate, the most effective way to obtain an even faster yield of products would be.	A. Add more of the enzymes B. Add more substrate C. Add an allosteric inhibitor D. Add a non competitive inhibitor
11	the non protein components of enzyme are called.	A. Co factor B. Transductor C. Messenger D. Both a and b
12	Which inhibitors are used as antibiotics to kill bacteria.	A. Competitive B. Irreversible C. Non competitive D. non reversible
13	Prosthetic groups are attached with enzyme by	A. Hydrogen bond B. Ionic bond C. Covalent bond D. Hydrophobic interaction
14	Rate of enzyme catalyzed reactions aretimes greater than uncatalyzed reaction rate.	A. 10^{3} to 10^{8} B. 10^{2} to 10^{3} C. 10^{1} to 10^{2}

		C. 10^6 to 10^{11}	D. 10^8 to 10^{10}
15	Enzymes areglobular proteins.	A. 2 D B. 3 D C. 4 D D. Both a and c	
16	The protein part of enzyme is called.	A. Apoenzyme B. Co enzyme C. Prosthetic group D. Holoenzyme	
17	Lock and key model of enzyme mechanism was proposed by	A. Emil Fischer B. Norman Haworth C. Daniel Koshland D. F-Sanger	
18	The most important coenzyme in a cell is the hydrogen acceptor.	A. NAD B. ATP C. FADH ₂ D. Co-enzyme Q	
19	Lock and key model was proposed by Emil Fischer in.	A. 1890 B. 1882 C. 1958 D. 1894	
20	Which enzyme is responsible for the breakdown of DNA.	A. DNA polymerase B. DNA synthase C. DNA Ligase D. DNAase	