

Biology Fsc Part 1 Chapter 5 Online Test

Sr	Questions	Answers Choice
1	The enzyme which uses ATP to join molecules.	A. Isomerases B. Ligases C. Hydrolases D. Oxidoreductases
2	Which of the following is a potent inhibitor of prostaglandin	A. Aspirin B. Tetracycline C. Dispirin D. Paracetamol
3	Which of the following can affect enzyme activity	A. pH B. Temperature C. Enzyme concentration D. All of above
4	Lock and key model of enzyme mechanism was proposed by	A. Emil Fisher B. Norman Haworth C. Daniel Koshland D. F-Sanger
5	Which enzyme breakdowns small polypeptides into dipeptides.	A. Trypsin B. Aminopeptidase C. Erypsin D. Pepsin
6	The most important coenzyme in a cell is the hydrogen acceptor.	A. NAD B. ATP C. FADH ₂ D. Co-enzyme Q
7	The enzymes which remove or add H ⁺ ions or electrons from substrates are called.	A. Isomerases B. Oxidoreductases C. Lyases D. Transferases
8	Small cleft or depression on the surface of a globular enzyme is.	A. Active site B. Synaptic cleft C. T tubule D. No such cleft exists
9	The enzymes of glycolysis are present in	A. Nucleoplasm B. Cytoplasm C. Stroma D. Mitochondrial matrix
10	All enzymes are synthesized inside cells by	A. Ribosomes B. Lysosomes C. Mitochondria D. Vacuoles
11	Which of the following statements about enzymes is correct.	A. They increase the activation energy of a reaction B. They are consumed during the reaction C. They are specific in terms of the reactions they catalyse D. They always work optimally at high temperatures.
12	At unlimited substrate concentration at a specific time, rate of reaction directly depends on.	A. Enzyme concentration B. Substrate concentration C. Temperature D. pH
13	Penicillin permanently disables the enzymes responsible for building bacterial cell walls because it acts as.	A. Irreversible inhibitor B. Competitive inhibitor C. Non-competitive inhibitor D. reversible inhibitor
14	When food is oxidized in a cell, enzymes draw electrons from food molecules and transfer them to.	A. Nicotinamide Adenine Dinucleotide B. Nicotinamide Riboside dinucleotide C. Nicotinamide cytosine dinucleotide D. Nicotinamide Thymine Dinucleotide

15	The phenomenon where the products of a process controls the process itself, oftenly limiting the production of more products is called.	A. Feedback activation B. Feed forward activation C. Feed back inhibition D. Feed forward inhibition
16	Which of the following represent induced fit model	A. When substrate combines with the binding site, it induces change in enzyme structure B. Active site is not a rigid structure C. It is modified form of lock and key model D. All of above
17	Pepsin's optimum pH is.	A. 1.5- 1.6 B. 4.6 -5.2 C. 8.0 D. 7.8 - 8.7
18	Emil Fischer proposed that,	A. Active site is rigid B. Active site is flexible C. Active site undergoes modification D. All of above
19	In complex metabolic pathways, end products formed inhibit the.	A. First enzyme B. First substrate C. First product D. Last enzyme
20	How does a non competitive inhibitor decrease the rate of enzyme catalysed reaction.	A. By changing the free energy change of the reaction B. By acting as a coenzyme for the reaction C. By changing the shape of the enzyme D. By binding the active site of the enzyme