

FA Part 2 Mathematics Full Book Test Online

Sr	Questions	Answers Choice
1	Two arcs of two different circles are congruent if:	A. The circles are congruent B. The corresponding central angles are congruent C. Both a and b D. None of the above
2	If equation of circle is $(x - h)^2 + (y - k)^2 = r^2$, then center of a circle:	A. $(-h, -k)$ B. (h, k) C. $(-h, k)$ D. $(h, -k)$
3	The vertex of the parabola $y^2 = 4ax$ is:	A. $(-a, 0)$ B. $(a, 0)$ C. $(0, -a)$ D. $(0, 0)$
4	Question Image	A. Above B. Left C. Below D. Right
5	If the line segment obtained by joining any two points of a region lies entirely within the region, then the region is called _____:	A. Maximum B. Vertex C. Minimum D. Convex
6	A chord containing the center of the circle is called _____ of the circle:	A. Diameter B. Chord C. Radius D. None of these
7	Question Image	A. Left or right B. Upper or lower C. Open D. None of these
8	Question Image	A. 0 B. 1 C. -1 D. 2
9	Question Image	A. $f(x)^2 + 1$ B. $f(x)$ D. $f(x^2)$
10	Question Image	A. $\cot x$ B. $-\cot x$ C. $\operatorname{cosec} x \cot x$ D. $-\operatorname{cosec} x \cot x$
11	Question Image	B. 0 C. 4 D. 7
12	If r is the radius of any circle and C its center, then any point $P(x_1, y_1)$ lies outside the circle only if:	A. $ CP < r$ B. $ CP = r$ C. $CP > r$ D. None of these
13	A function $P(x) = 6x^4 + 7x^3 + 5x + 1$ is called a polynomial function of degree ----- with leading coefficient -----.	A. 4, 6 B. 2, 7 C. 2, 3 D. 2, 5
14	The horizontal line x' ox is called:	A. x-axis B. y-axis C. abscissa D. ordinate
15	Equation of a line parallel to x-axis:	A. $x = 0$ B. $x = y$ C. $y = a$ D. $x = a$

16 $x = c$ is a vertical line parallel to _____.

- A. x-axis
- B. y-axis may be
- C. y-axis
- D. None of these

17 The feasible solution, which maximizes or minimizes the objective function, is called the _____:

- A. Maximum solution
- B. Optimal solution
- C. Minimum solutions
- D. None of these

18 The line $y = c$ is above the x - axis, if:

- A. $c > 0$
- B. $c < 0$
- C. $c = 0$

19 The function $f(x) = 3x^2$ has minimum value at :

- A. $x = 3$
- B. $x = 2$
- C. $x = 1$
- D. $x = 0$

20 $ax + by + c = 0$, will represent equation of straight line parallel y-axis if:

- A. $a = 0$
- B. $b = 0$
- C. $c = 0$
- D. $a = 0, c = 0$