

## FA Part 2 Mathematics Full Book Test Online

| Sr | Questions                                                                                                     | Answers Choice                                                                                      |
|----|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1  | Question Image                                                                                                | C. 0<br>D. 1                                                                                        |
| 2  | The pair of lines of homogeneous second-degree equation $ax^2 + 2hxy + by^2 = 0$ are real and coincident, if: | A. $h^2 < ab$<br>B. $h^2 > ab$<br>C. $h^2 = ab$<br>D. None of these                                 |
| 3  | Question Image                                                                                                | A. Parallel lines<br>B. Perpendicular lines<br>C. Non-parallel lines<br>D. None of these            |
| 4  | $y = b$ is a horizontal line perpendicular to _____:                                                          | A. x - axis<br>B. y - axis may be<br>C. y - axis<br>D. None of these                                |
| 5  | Question Image                                                                                                | A. $e^x \sin x + c$<br>B. $-e^{-x} \sin x + c$<br>C. $e^{-x} \cos x + c$<br>D. $-e^{-x} \sin x + c$ |
| 6  | Question Image                                                                                                | A. Open<br>B. Closed<br>C. Open as well as closed<br>D. None of these                               |
| 7  | Question Image                                                                                                | A. 4<br>B. 2<br>C. 1                                                                                |
| 8  | The point (5, 8) lies the line $2x - 3y + 6 = 0$                                                              | A. Above<br>B. Below<br>C. On<br>D. None                                                            |
| 9  | Perpendicular dropped from the center of a circle on a chord _____ the chord:                                 | A. Normal<br>B. Bisects<br>C. Equal to<br>D. None of these                                          |
| 10 | Question Image                                                                                                | A. 1<br>B. 2<br>C. 3<br>D. 0                                                                        |
| 11 | Question Image                                                                                                | A. $\tan x + c$<br>B. $-\tan x + c$<br>C. $\sec x + c$<br>D. $-\sec x + c$                          |
| 12 | Question Image                                                                                                | A. $\sin x$<br>B. $\cos x$<br>C. $\sinh x$<br>D. $\cosh x$                                          |
| 13 | If a circle and a line intersect in two points, then the line is called:                                      | A. A chord<br>B. A secant<br>C. A diameter<br>D. None of these                                      |
| 14 | The conic is a parabola, if:                                                                                  | A. $e = 1$<br>B. $e > 1$<br>C. $0 < e < 1$<br>D. $e = 0$                                            |
| 15 | Question Image                                                                                                | A. Unit Vector<br>B. Null vector<br>C. Position vector<br>D. None of these                          |
| 16 | A line segment whose end points lie on the circle is called a _____ of the circle.                            | A. Radius<br>B. Chord<br>C. Diameter                                                                |

D. None of these

---

17  A. 0  
B. 1  
**C. 2**  
D. 4

---

18 If  $y = \sin x$  then  $dy =$  A.  $\cos y \, dx$   
B.  $\cos x$   
**C.  $\cos x \, dx$**   
D.  $\cos x \, dy$

---

19  A.  $x^{<sup>2</sup>} = 4ay$   
B.  $-x^{<sup>2</sup>} = 4ay$   
C.  $-y^{<sup>2</sup>} = 4ax$   
D.  $y^{<sup>2</sup>} = 4ax$

---