

FA Part 2 Mathematics Chapter 6 Test Online

Sr	Questions	Answers Choice
1	A line segment whose end points lie on the circle is called a _____ of the circle.	A. Radius B. Chord C. Diameter D. None of these
2	The conic is a parabola, if:	A. $e = 1$ B. $e > 1$ C. $0 < e < 1$ D. $e = 0$
3	Point p (-5, 6) lies the circle $x^2 + y^2 + 4x - 6y - 12 = 0$	A. Outside B. Inside C. On D. None of these
4	A line segment having both the end-points on a circle and not passing through the center is called a:	A. A chord B. A secant C. A diameter D. None of these
5	The directrix of the parabola $x^2 = -4ay$ is:	A. $x = a$ B. $x = -a$ C. $y = a$ D. $y = -a$
6	If r is the radius of the circle and its center is at origin, then equation of circle is:	A. $x^{2/2} + y^{2/2} = a^{2/2}$ B. $x^{2/2} + y^{2/2} = r^{2/2}$ C. $x^{2/2} - y^{2/2} = a^{2/2}$ D. $x^{2/2} - y^{2/2} = r^{2/2}$
7	The focus of the parabola $y^2 = -4ax$ is:	A. $(-a, 0)$ B. $(0, a)$ C. $(0, -a)$ D. $(a, 0)$
8	The graph of the parabola $y^2 = -4ax$ lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
9	The conic is an ellipse, if:	A. $e = 1$ B. $e > 1$ C. $0 < e < 1$ D. $e = 0$
10	The graph of the parabola $x^2 = 4ay$ lies in quadrant:	A. I and II B. III and IV C. II and III D. I and III
11	A line segment joining two distinct points on a parabola is called a _____ of the parabola:	A. Chord B. Vertex C. Focus D. Directrix
12	The vertex of the parabola $y^2 = -4ax$ is:	A. $(-a, 0)$ B. $(a, 0)$ C. $(0, -a)$ D. $(0, 0)$
13	If the equation of the parabola is $y^2 = 4ax$, then opening of the parabola is to the right of the:	A. x-axis B. $y = x$ C. y-axis D. $x + y = 0$
14	The focus of the parabola $x^2 = -4ay$ is:	A. $(-a, 0)$ B. $(0, a)$ C. $(0, -a)$ D. $(a, 0)$

15 The condition for the line $y = mx + c$ to be a tangent to the circle $x^2 + y^2 = a^2$ is $c =$ _____:

16 A chord containing the center of the circle is called _____ of the circle:

A. Diameter
B. Chord
C. Radius
D. None of these

17 Two arcs of two different circles are congruent if:

A. The circles are congruent
B. The corresponding central angles are congruent
C. Both a and b
D. None of the above

18 The opening of the parabola $y^2 = -4ax$ is to the left of the:

A. x-axis
B. $x = 1$
C. y-axis
D. $x = 0$

19 The graph of the parabola $y^2 = -4ax$ is symmetric about:

A. x-axis
B. major axis
C. y-axis
D. minor axis

20 Point $(5, 6)$ lies the circle $x^2 + y^2 = 81$:

A. Outside
B. Inside
C. On
D. None of these