

Chords and Arcs

Sr	Questions	Answers Choice
1	A 4cm long chord subtends a central angle of 60° . The radial segment of this circle is:	A. 1 B. 2 C. 3 D. 4
2	Equal chords of a circle (or of congruent circles) subtend equal _____ at the centre (corresponding centres):	A. Arcs B. Angles C. Regions D. Chords
3	An arc subtends a central angle of 40° then the corresponding chord will subtend a central angle of:	A. 20° B. 40° C. 60° D. 80°
4	The circular region bounded by an arc of a circle and its two corresponding radial segments is called a:	A. Sector of the circle B. Area of the circle C. Radius of the circle D. Circumference of the circle
5	The arcs opposite to incongruent central angles of a circle are always:	A. Congruent B. Incongruent C. Parallel D. Perpendicular
6	Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of:	A. 15° B. 30° C. 45° D. 60°
7	The portion of a circle bounded by an arc and a chord is known as:	A. Diameter of the circle B. Radius of the circle C. Chord of the circle D. Segment of the circle
8	If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centre) are equal, the _____ are equal:	A. Lines B. Segments C. Chords D. Arcs
9	The semi circumference, and the diameter of a circle both subtend a central angle of:	A. 90° B. 180° C. 270° D. 360°
10	Any portion of the circumference will be known as _____ of the circle:	A. A chord B. An arc C. A tangent D. An angle
11	If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chord are:	A. Perpendicular B. Parallel C. Bisect each other D. Equal
12	If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi circular) are:	A. Proportional B. Equal C. Congruent D. Bisecting chords
13	If an arc of a circle subtends a central angle of 60° , then the corresponding chord of the arc will make the central angle of:	A. 20° B. 40° C. 60° D. 80°
14	An arc subtends a central angle of 40° then corresponding chord will subtend a central angle of _____:	A. 20° B. 40° C. 60° D. 80°
15	The straight line joining any two points of the circumference is called:	A. Segment of circle B. Arc of circle C. Chord of circle D. Tangent of circle

16 The chord length of a circle subtending a central angle of 180° is always:
A. Less than radial segment
B. Equal to the radial segment
C. Double of the radial segment
D. None of these

17 The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be:
A. 30°
B. 45°
C. 60°
D. 75°

18 In an arc of circle substends a central angle 60° , then corresponding chord will make central angle:
A. 20°
B. 40°
C. 60°
D. 80°

19 A pair of chords of a circle subtending two congruent central angles is:
A. Congruent
B. Incongruent
C. Over lapping
D. Parallel

20 The boundary traced by a moving point in a circle its _____:
A. Circumference
B. Diameter
C. Radius
D. Area
