

ECAT Pre General Science Physics Chapter 7 Oscillations

Sr	Questions	Answers Choice
1	To and fro motion of a body is about its mean position is known as:	A. Translatory motion B. Vibratory motion C. Rotatory motion D. None of these
2	The restoring force is _____ and opposite to the applied force within _____:	A. Equal, elastic limit B. Different, the walls of the laboratory C. Different, elastic limit D. None of these
3	If a given spring of spring constant K is cut into two identical segments, the spring constant of each segment is:	A. K/2 B. 2 K C. 4 K D. None of these
4	The string of a simple pendulum should be:	A. Heavy B. Extensible C. In-extensible D. None of these
5	If a force of 0.05 N produces an elongation of 20 mm in string, then its spring constant will be:	A. 250 N m ⁻¹ B. 25 N m ⁻¹ C. 2.5 N m ⁻¹ D. None of these
6	In vibrational motion(SHM)	A. P.E remains conserved B. Average K.E remain constant C. Neither P.E nor K.E remains constant D. Total energy remains constant
7	A particle moving uniformly along circle its projection along diameter performs	A. Linear motion B. Projectile motion C. SHM D. Rotatory motion
8	A body with frequency of would complete one vibration in:	A. f seconds B. 1/f seconds C. 1 second D. f ² second
9	The restoring force is always directed towards:	A. Rest position B. Equilibrium position C. Mean position D. All of them
10	Vibratory motion is always under	A. Applied force B. Restoring force C. Periodic force D. Gravitational force
11	Distance covered during one vibration of an oscillating body in terms of amplitude A is:	A. A B. 2 A C. 3 A D. 4 A
12	When quarter of a cycle is completed, the phase of vibration is:	A. 90° B. 180° C. 45° D. 45°

background-position: initial;
background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial;
background-clip: initial;">D. 360°

13 The time period of a simple pendulum is independent of its:
A. Length
B. Mass
C. Value of g
D. Both A and B

14 The displacement of body executing SHM is
A. $x ₀ \cos \omega t$
B. $x ₀ \sin \omega t$
C. $x ₀ \sin \omega t^2$
D. Both A, B

15 Which one of the following is an example of SHM
A. Motion in a plane
B. Motion in a swing
C. Motion in a car
D. None of these

16 An object undergoes SHM. Its maximum equilibrium positions:
A. Maximum
B. Half of its maximum value
C. Zero
D. None

17 Amplitude in SHM is equivalent to _____ in circular motion:
A. Diameter
B. Radius
C. Circumference
D. None of these

18 The graph showing the variation of displacement with time is a:
A. Sine curve
B. Straight line
C. Parabola
D. None of these

19 SHM is type of _____ motion
A. Vibratory
B. Linear
C. Circular
D. None

20 The body oscillates due to _____ accelerates and overshoots the rest position due to _____
A. Applied force, Inertia
B. Restoring force, Friction
C. Frictional force, Inertia
D. Restoring force, Inertia