

## ECAT Pre General Science Physics Chapter 15 Electromagnetic Induction

| Sr | Questions                                                                                                                                                            | Answers Choice                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | When there is no relative motion between the magnet and coil, the galvanometer indicates:                                                                            | A. No current in circuit<br>B. An increasing current<br>C. A decreasing current<br>D. Either B or C                                                                                                                        |
| 2  | Split rings act as                                                                                                                                                   | A. Vibrator<br>B. Resistor<br>C. Motor<br>D. Commutator                                                                                                                                                                    |
| 3  | Instead of moving the coil towards a magnet, the magnet is moved towards the coil with the same speed. The galvanometer shows current                                | A. Of same magnitude in the same direction<br>B. Of different magnitude in the same direction<br>C. Of same magnitude but in opposite direction<br>D. Of different magnitude in the opposite direction<br>E. None of these |
| 4  | When there is no relative motion between the magnet and coil, the galvanometer indicated                                                                             | A. No current in the circuit<br>B. An increasing current<br>C. A decreasing current<br>D. A constant current<br>E. Either B or C                                                                                           |
| 5  | The induced current in a conductor depends upon:                                                                                                                     | A. Resistance of the loop<br>B. Speed with which the conductor moves<br>C. Any of these<br>D. Both A and B<br>E. None of these                                                                                             |
| 6  | In magnet-coil experiment, emf can be produced by:                                                                                                                   | A. Keeping the coil stationary and moving the magnet<br>B. Keeping the magnet stationary and moving the coil<br>C. Relative motion of the loop and magnet<br>D. Any one of above<br>E. All above                           |
| 7  | A device which converts Electrical energy into mechanical energy is called as                                                                                        | A. Transformer<br>B. Generator<br>C. Motor<br>D. All of these                                                                                                                                                              |
| 8  | A coil of constant area is placed in a constant magnetic field. An include current is produced in the coil when:                                                     | A. The coil is destroyed<br>B. The coil is Rotated<br>C. The coil is neither destroyed nor rotated<br>D. Both (A) and (B)<br>E. None of these                                                                              |
| 9  | An emf is set up in a conductor when it:                                                                                                                             | A. Is kept in a magnetic field<br>B. Is kept in an electric field<br>C. Moves across a magnetic field<br>D. Both A and B<br>E. None of these                                                                               |
| 10 | Referring to above figure, current in coil P falls from its maximum value to zero:                                                                                   | A. At the instant the switch is closed<br>B. At the instant the switch is opened<br>C. When switch is kept open<br>D. When switch is kept closed<br>E. None of these                                                       |
| 11 | A square loop of wire is moving through a uniform magnetic field. The normal to the loop is oriented parallel to the magnetic field. The emf induced in the loop is: | A. Zero<br>B. Of smaller magnitude<br>C. Of larger magnitude<br>D. Sometimes B, sometimes C<br>E. Neither of these                                                                                                         |
|    |                                                                                                                                                                      | A. A metal is kept in varying magnetic field<br>B. A metal is kept in steady magnetic                                                                                                                                      |

12 Eddy current is produced when:  
field  
C. A circular coil is placed in a steady magnetic field  
D. A current is passed through a circular coil

13 Referring to above figure, due to change in current in the coil P, the change in magnetic flux:  
A. Is associated with coil P  
B. Is associated with coil S  
C. Causes an induced current in coil S  
D. All of these  
E. None of these

14 In the equilibrium state, the potential difference between two ends of the conductor moving across a magnetic field is called:  
A. Motion emf  
B. Electrostatic emf  
C. Induced emf  
D. Both A and B  
E. Both A and C

15 Michael Faraday and Joseph Henry belong respectively to  
A. USA and England  
B. England and France  
C. England and USA  
D. USA and France  
E. None of these

16 When the conductor moved across a magnetic field:  
A. Emf induced is similar to that of a battery  
B. Emf induced gives rise to induced current  
C. An emf induced across its ends  
D. All are correct  
E. None of these

17 Self induced e.m.f. is also called  
A. Motional e.m.f.  
B. Thermistor  
C. Electrostatic induction  
D. Back e.m.f

18 An emf is set up in a conductor when it  
A. Is kept in a magnetic field  
B. Is kept in an electric field  
C. Moves across a magnetic field  
D. Both A and B  
E. None of these

19 Motional emf is called motional:  
A. Electromagnetic force and is measured in newtons  
B. Electromotive force and is measured in volt  
C. Electromotive force and is measured in newtons  
D. Electromagnetic force and is measured in volts  
E. None of these

20 The induced current in the loop can be Increased by  
A. Using a stronger magnetic field  
B. Moving the loop faster  
C. Replacing the loop by a coil of many turns  
D. All above  
E. Both A and B