

ECAT Pre General Science Mathematics Chapter 6 Quadratic Equations Online Test

0	0 5	A 01 :
Sr	Questions	Answers Choice
1	There are basic techniques for solving a quadratic equation	A. Two B. Three C. Four D. None of these
2	$(2 + w) (2 + w^2) = $	A. 1 B. 2 C. 3 D. 0
3	$w^{28}+w^{38}=$	A. 0 B. 1 C. w D1
4	w ⁷³ =	A. 0 B. 1 C. w D. w ²
5	w ²⁹ =	A. 0 B. 1 C. w D. w ²
6	For any integer k, w ⁿ = when n = 3k	A. 1 B. 2 C. 0 D4
7	The product of cube roots of unity is	A. Zero B. 1 C1 D. None of these
8	If b^2 - 4ac = 0 then the roots of the equation are	A. Real and distinct B. Real and equal C. Imaginary D. None of these
9	If b^2 - 4ac is positive then the roots of the equation are	A. Real B. Imaginary C. Positive D. Negative
10	The roots of the equation will be irrational if b^2 - 4ac is	A. Positive and perfect square B. Positive but not a perfect square C. Negative D. Zero
11	The roots of the equations will be equal if b^2 - 4ac is	A. Positive B. Negative C. 1 D. Zero
12	If w is a cube root of unity then 1 + w + w ² =	A. 1 B. 2 C. 0 D1
13	If the roots of 3x2+kx + 12 = 0 are equal then k =	
14	The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is	A. b ² + 4ac B. b ² - 4ac C. 4ac - b ² D. a ² - 4ac
15	If one root of the equation x^2 - $3x + a = 0$ is 2 then $a =$	A. 0 B. 1 C. 2 D. 3
16	Roots of the equation $9x^2$ - $12x + 4 = 0$ are	A. Real and equal B. Real and distinct C. Complex

		D. None of these
17	Roots of the equation $2x^2$ - $7x + 3 = 0$ are	A. Rational B. Irrational C. Complex D. None of these
18	Roots of the equation $x^2 + 5x - 1 = 0$ are	A. Rational B. Irrational C. Complex D. None of these
19	Roots of the equation $x^2 + 2x + 3 = 0$ are	A. Real and equal B. Real and distinct C. Complex D. None of these
20	The roots of the equation ax^2 + bx + x = 0 are real and distinct if	A. b ² - 4ac <0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
21	The roots of the equation ax^2 + bx + c = 0 are complex/imaginary if	A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
22	The roots of the equation ax^2 + bx + c = 0 are real and equal if	A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
23	If S and P are the sum and the product of roots of a quadratic equation, then the quadratic equation is	A. x ² + Sx - P = 0 B. x ² - Sx + P = 0 C. x ² - Sx - P = 0 D. X ² + Sx + P = 0
		A. c/a
24	Question Image	Bc/a C. b/a Db/a
24	Question Image If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is	Bc/a C. b/a
		Bc/a C. b/a Db/a A. 0 B. 7 C7
25	If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is	Bc/a C. b/a Db/a A. 0 B. 7 C7 D. 5 A. 0 B. 2 C. 18
25	If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is If $x^3 - x^2 + 5x + 4$ is divided by $x - 2$, then the reminder is	Bc/a C. b/a Db/a A. 0 B. 7 C7 D. 5 A. 0 B. 2 C. 18 D. 14 A. 1 B. 0 C. 4
25 26 27	If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is If $x^3 - x^2 + 5x + 4$ is divided by $x - 2$, then the reminder is If $x^4 - 10x^2 - 2x + 4$ is divided by $x + 3$, then the reminder is	Bc/a C. b/a Db/a A. 0 B. 7 C7 D. 5 A. 0 B. 2 C. 18 D. 14 A. 1 B. 0 C. 4 D. None of these A. 8 B. 6 C. 4
25 26 27 28	If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is If $x^3 - x^2 + 5x + 4$ is divided by $x - 2$, then the reminder is If $x^4 - 10x^2 - 2x + 4$ is divided by $x + 3$, then the reminder is If $x^3 + 4x^3 - 2x + 5$ is divided by $x - 1$, then the reminder is	Bc/a C. b/a Db/a A. 0 B. 7 C7 D. 5 A. 0 B. 2 C. 18 D. 14 A. 1 B. 0 C. 4 D. None of these A. 8 B. 6 C. 4 D. None of these A. P(a) B. P(-a) C. P(0)