

Physics ECAT Pre Engineering MCQ's Test For Full Book

Sr	Questions	Answers Choice
1	The maximum possible error in the reading of an instrument is _____ its least count.	A. Half of B. Quarter of C. Equal to D. Double than
2	Resolving power in mth order diffraction for grating is given by:	A. $R = N/m$ B. $R = m/N$ C. $R = N \times m$ D. None of these
3	The velocity of light in vacuum can be changed by changing	A. Frequency B. Amplitude C. Wavelength D. None of these
4	Any superconductor with critical temperature above 77 K, is referred as	A. low temperature superconductor B. high temperature superconductor C. very low temperature superconductor D. none of them
5	Root out the conventional source of energy:	A. Energy from biomass B. hydroelectric energy C. Geothermal energy D. None of these
6	Most ideal gas at room temperature is.	A. CO ₂ B. SO ₂ C. NH ₃ D. H ₂
7	The restoring force is _____ and opposite to the applied force within _____,:.	A. Equal, elastic limit B. Different, the walls of the laboratory C. Different, elastic limit D. None of these
8	The maximum value of drag force on an object is 9.8 N . What will be the value of its mass?	A. 9.8 Kg B. 2 kg C. 4 Kg D. 1 Kg
9	A (100 W , 200 W) bulb is connected to a 160 V power supply. The power consumption would be	A. 64 W B. 80 W C. 100 W D. 125 W
10	How many number of anodes used in electron gun	A. one B. two C. three D. six
11	A simple pendulum consists of a	A. small light bob B. small heavy bob C. big light bob D. big heavy bob
12	At constant temperature, on increasing the pressure of a gas by 5%, its volume. The final temperature of the gas will be	A. 81 K B. 355 K C. 627 K D. 627°C
13	At 'resonance' the transfer of energy from deriving source to the oscillator is	A. maximum B. minimum C. zero D. none of them
14	In magnet-coil experiment, emf can be produced by:	A. Keeping the coil stationary and moving the magnet B. Keeping the magnet stationary and moving the coil C. Relative motion of the loop and

		<p style="text-align: right;">magnet D. Any one of above E. All above</p>
15	If a gymnast sitting on a rotating stool with his arms outstretched, brings his arms towards the chest, then its angular velocity will	<p style="text-align: right;">A. Increase B. Decrease C. Remain constant D. None of these</p>
16	When a body moves to and fro motion, this type of motion is called	<p style="text-align: right;">A. translatory motion B. circular motion C. oscillatory motion D. all of them</p>
17	The resistance of 20 cm long wire is 10Ω . When the length is changed to 40 cm. The new resistance is	<p style="text-align: right;">A. $10<\span style="color: rgb(34, 34, 34); font-family: &quot;Times New Roman&quot; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">\Omega$ B. $20<\span style="color: rgb(34, 34, 34); font-family: &quot;Times New Roman&quot; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">\Omega$ C. $30<\span style="color: rgb(34, 34, 34); font-family: &quot;Times New Roman&quot; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">\Omega$ D. $40<\span style="color: rgb(34, 34, 34); font-family: &quot;Times New Roman&quot; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">\Omega$</p>
18	The missing mass which is converted to energy in the formation of nucleus, is called	<p style="text-align: right;">A. packing fraction B. mass defect C. binding energy D. none of these</p>
19	β -particles are easily deflected by collisions than heavy	<p style="text-align: right;">A. >α-particles B. >β-particles C. >γ-particles D. none of these</p>
20	INTELSAT operates at frequencies 4, 6, 11, 14 having unit of	<p style="text-align: right;">A. KHz B. MHz C. GHz D. BHz</p>