

Physics ECAT Pre Engineering MCQ's Test For Full Book

Sr	Questions	Answers Choice
1	The potential difference across the conductors should be maintained constant by connecting the ends of wire to the terminal of a device called a source of	A. power B. current C. resistance D. temperature
2	The work done by a force, keeping an object in circular motion with constant speed is:	A. Zero J B. 1 J C. 0.1 J D. 0.01 J
3	The time of flight of a projectile motion equal to	A. half of the time to reach maximum height B. twice the time to reach maximum height C. one fourth of time to reach maximum height D. time to reach maximum height
4	A ten ohm electric heater operates on a 110 V line. Calculate the rate at which it develops heat in watts	A. 1310 W B. 670 W C. 810 W D. 1210 W
5	The RMS value of alternating current is:	A. 0.7 times at the peak value B. 0.5 times the peak value C. 0.7 times the Instantaneous value D. Equal to maximum voltage E. None of these
6	Which of the following is not an example of intertial frame	A. a body placed on the surface of earth B. a body placed in a car moving with uniform velocity C. a body placed in a car moving with same acceleration D. none of these
7	Acceleration of a body at any particular instant during its motion is known as	A. average acceleration B. uniform acceleration C. instantaneous acceleration D. all of them
8	In the force applied to parallel to the direction of motion, then the work done is:	A. Positive B. Negative C. Zero D. None of these
9	Whenever a covalent bond breaks, it creates:	A. An electron B. A hole C. An electron-hole pair D. A positron E. All of these
10	Particles have the mass smallest of following is:	A. Electron B. Proton C. Neutron D. Quark
11	de-Broglies hypthesis was experimentally verified by	A. Maxwell B. Compton C. Einstein D. Davison and Germer
12	Aluminum is a:	A. Good insulator<o:p></o:p> B. Bad conductor<o:p></o:p> C. Both (A) and (B)<o:p></o:p> D. Both (A) and (B)<o:p></o:p> D. Excellent conductor<o:p></o:p> E. Excellent conductor<o:p></o:p> E.

		size:12.upt;iine-neignt:10/7%;ront-ramily: "11mes New Roman","serif"">Semiconductor <o:p> </o:p>
13	When the bob of simple pendulum is at extreme position, its K.E. will be	A. maximum B. minimum C. zero D. all of them
14	Such oscillations in which the amplitude decreases steadily with time, are called	A. resonance B. force oscillations C. large oscillations D. damped oscillations
15	To observe interference of light, the condition, which must be met with is that the sources must be	A. Monochromatic B. Phase coherent C. Both of above D. None of above
16	The pattern of crystalline solid is:	A. One dimesional B. Two dimensional C. Three dimensional D. None of these E. Either (A) or (B)
17	A transformer has 100 turns on the imput side 500 turns on the output side. If rms value of input voltage are 220 V and 5A respectively. The output power is?	A. 500 watt B. 50 watt C. 1100 watt D. 1440 watt
18	If the vector 5 N lies along with x-axis, then its component along y-axis will be:	A. Zero B. 5 N C. 7 N D. 10 N
19	The acceleration of body executing SHM is directly proportional to	A. Applied force B. Amplitude C. Displacement D. Frictional force
20	The reverse saturation current in a PN junction diode is only due to	A. Majority carriers B. Minority Carriers C. Acceptor ions D. Donor ions