

ECAT (Pre-Eng) Mathematics Chapter 6 Quadratic Equations

Sr	Questions	Answers Choice
1	$w^{11} = \underline{\hspace{2cm}}$	A. 0 B. 1 C. w D. $w^{²}$
2	Which of the following is a factor of $x^3 - 3x^2 + 2x - 6$	A. $x + 2$ B. $x + 3$ C. $x - 3$ D. $x - 4$
3	Question Image	A. n if n is even B. 0 for any natural number n C. 1 if n is odd D. None of these
4	The roots of $(x - a)(x - b) = ab$ are always	A. Real B. Depends upon a C. Depends upon b D. Depends upon a and b
5	Which of the following is factor of $p(x) = 2x^3 + 3x^2 + 3x + 2$?	A. $x+1$ B. $2x+1$ C. $3x+1$ D. $2x-1$
6	The maximum value of the quadratic function $f(x) = 2x^2 - 4x + 7$, is	A. 3 B. 5 C. -3 D. -5
7	Question Image	A. Two real roots B. Two positive roots C. Two negative roots D. One positive and one negative root
8	The vertex of the graph of the quadratic function $f(x) = x^2 - 10$, is	A. $(0, -10)$ B. $(-10, 0)$ C. $(10, 0)$ D. $(0, 10)$
9	Roots of the equation $x^2 - x - 2 = 0$ are	A. $\{2, -1\}$ B. $\{1, 0\}$ C. $\{2, 1\}$ D. $\{-2, 1\}$
10	If α, β are the roots of $ax^2 + bx + c = 0$ and $\alpha + h, \beta + h$ are the roots of $px^2 + qx + r = 0$, then $h =$	
11	If the roots of $ax^2 + bx + c = 0$ are equal in magnitude but opposite in sign, then	A. $a = 0$ B. $b = 0$ C. $c = 0$ D. None of these
12	The roots of the equation $2^{2x} - 10 \cdot 2^x + 16 = 0$ are	A. 2, 8 B. 1, 3 C. 1, 8 D. 2, 3
13	$4^{1+x} + 4^{1-x} = 10$ is called	A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
14	A polynomial of arbitrary degree	A. $f(x) = 0$ B. $f(x) = x$ C. $f(x) = a$ D. $f(x) = ax + b, a \neq 0$
15	The roots of $px^2 - (p-q)x - q = 0$ are	A. equal B. Irrational C. Rational D. Imaginary

16 For any integer k , $w^n = \underline{\hspace{2cm}}$ when $n = 3k$ B. 2
C. 0
D. -4

17 Both the roots of the equation $(x-b)(x-c) + (x-c)(x-a) + (x-a)(x-b) = 0$ are always A. Positive
B. Negative
C. Real
D. None of these

18 The condition for $ax^2 + bx + c$ to be expressed as the product of linear polynomials is A. $b^2 - 4ac = 0$
B. $b^2 - 4ac \geq 0$
C. $b^2 - 4ac < 0$
D. $b^2 = 4ac$

19 If the roots of $ax^2 + bx + c = 0$ are real and distinct then A. $ab > 0$
B. $a = 0$
C. $ab < 0$
D. $a > 0, b > 0$

20 Question Image