

ECAT (Pre-Eng) Mathematics Chapter 6 Quadratic Equations

Sr	Questions	Answers Choice
1	Question Image	A. Polynomial of degree 0 B. Polynomial of degree 1 C. Polynomial of degree 2 D. Polynomial of degree n
2	If a, β are the roots of the equation $x^2 + kx + 12 = 0$ such that $a - \beta = 1$, the value of k is	A. 0 B. ± 1 C. ± 5 D. ± 7
3	if one root of the equation $ix^2 - 2(i + 1)x + (2 - i) = 0$ is $2 - i$ then the other root is	A. $-i$ B. $2 + i$ C. i D. $2 - i$
4	If $w+w^2$ is a root of $(x+1)(x+2)(x+3)(x+4) = k$, then	A. $k=0$ B. $k=1$ C. $k=w$ D. $k=w^2$
5	Question Image	A. Polynomial of degree 0 B. Polynomial of degree 2 C. Quadratic equation D. None of these
6	Question Image	
7	The roots of $ax^2+bx+c=0$ are	A. Rational $\Leftrightarrow b^2 - 4ac \geq 0$ B. Irrational $\Leftrightarrow b^2-4ac > 0$ C. Real $\Leftrightarrow b^2-4ac \neq 0$ D. Rational $\Leftrightarrow b^2-4ac = 0$
8	If the roots of $ax^2+bx+c = 0$ ($a > 0$) be greater than unity, then	A. $a + b + c = 0$ B. $a + b + c > 0$ C. $a + b + c < 0$ D. None of these
9	Question Image	A. $(-1, 2)$ B. $(-1, 1)$ C. $(1, 2)$ D. $\{-1\}$
10	The cube roots of 8 are	
11	If a polynomial $P(x)$ is divided by $x + a$, then the remainder is	A. $P(a)$ B. $P(-a)$ C. $P(0)$ D. None of these
12	If the equation $x^2+2x-3=0$ and $x^2+3x-k=0$ have a common root then the non - zero value of k is	A. 1 B. 3 C. 2 D. 4
13	The minimum value of the quadratic function $f(x) = x^2 + 6x - 2$, is	A. 11 B. 6 C. -11 D. 13
14	If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not change is	
15	If $x^3 - x^2 + 5x + 4$ is divided by $x - 2$, then the remainder is	A. 0 B. 2 C. 18 D. 14
16	A quadratic equation has two	A. roots B. degree C. variables D. constants
17	Which of the following is factor of $x^{11}+a^{11}$, where n is an odd integer	A. $x-a$ B. $x+a$ C. x^2-a

18 Roots of the equation $9x^2 - 12x + 4 = 0$ are

A. Real and equal
B. Real and distinct
C. Complex
D. None of these

19 The maximum value of the quadratic function $f(x) = 2x^2 - 4x + 7$, is

A. 3
B. 5
C. -3
D. -5

20 If $a > 0$, $b > 0$, $c > 0$, then the roots of the equation $ax^2 + bx + c = 0$ are

A. Real and negative
B. Non-real with negative real parts
C. Real and positive
D. Nothing can be said
