

ECAT Mathematics Chapter 2 Set Function and Groups

Sr	Questions	Answers Choice
1	Multiplicative inverse of 0 is	A. 0 B. 1 C. ± 1 D. Does not exist
2	$G = \{e, a, b, c\}$ is an Abelian group with e as identity element. The order of the other elements are	A. 2,2,2 B. 3,3,3 C. 2,2,4 D. 2,3,4
3	Let A, B , and C be any sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$ then	A. $A \neq C$ B. $B = C$ C. $A = B$ D. $A \neq B$
4	Question Image	D. None of these
5	$G = \{e, a, b, c\}$ is an Abelian group with e as identity element. The order of the other elements are	A. 2, 2, 2 B. 3, 3, 3 C. 2, 2, 4 D. 2, 3, 4
6	If $O = \{1, 3, 5, \dots\}$, then $n(O) =$	A. Infinite B. Even numbers C. odd integers D. 99
7	The set of natural is a semi group w.r.t	A. Addition B. Division C. Subtraction D. None of these
8	Question Image	
9	If A and B are two sets then intersection of A and B is denoted by	
10	If $n(A) = n$ then $n(P(A))$ is	A. $2n$ B. n^2 C. $n/2$ D. 2^n
11	The set of integers is a subset of	A. The set of natural numbers B. The set of whole numbers C. The set of prime numbers D. The set of rational numbers
12	Question Image	A. A B. A' C. U D. None of these
13	The set of rational numbers is subset of	A. The set of natural numbers B. The set of real numbers C. The set of integers D. The set of whole numbers
14	A monoid $(G, *)$ is said to be group if	A. have identity element B. is commutative C. have inverse of each element D. None of these
15	The set of the first elements of the ordered pairs forming a relation is called its	A. Function on B B. Range C. Domain D. A into B
16	Two sets A and B are said to be disjoint if	
17	Question Image	
18	Empty set is	A. Not subset of every set B. Finite set C. Infinite set D. Not the member of real numbers

19 If A and B are two sets then any subset R of $B \times A$ is called

- A. relation on A
- B. relation on B
- C. relation from A to B
- D. relation from B to A

20 Question Image

- A. A
- B. A'
- C. U
- D. U'