

## ECAT (Pre-Eng) Mathematics Chapter 21 Linear Inequalities & Linear Programming

| Sr | Questions                                                                                                                         | Answers Choice                                                                                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | $x = 1$ is in the solution of the inequality                                                                                      | A. $x + 1 > 0$<br>B. $x - 2 > 0$<br>C. $3x - 1 < 0$<br>D. $x + 2 < 0$                                                                          |
| 2  | The total cost of 2 apples and 3 oranges is \$1.70, which of the following is true                                                | A. The cost of one apple<br>B. The cost of one orange<br>C. Both have equal cost per item<br>D. Cost of each single item can not be determined |
| 3  | The maximum value of $Z = 3x + 4y$ subjected to the constraints $x + y \leq 40$ , $x + 2y \leq 60$ , $x \geq 0$ and $y \geq 0$ is | A. 120<br>B. 100<br>C. 140<br>D. 160                                                                                                           |
| 4  | A point of a solution region where two of its boundary lines intersect, is called:                                                | A. Vertex of the solution<br>B. Feasible point<br>C. Point of inequality<br>D. Null point of the solution region                               |
| 5  | Multiplying each side of an inequality by (-1) will:                                                                              | A. Not effect<br>B. Change the sign<br>C. Become zero<br>D. Not defined                                                                        |
| 6  | The real numbers which satisfy an inequality form its                                                                             | A. solution<br>B. coefficient<br>C. domain<br>D. range                                                                                         |
| 7  | $(0,0)$ is in the solution of the inequality                                                                                      | A. $x + y > 3$<br>B. $x - y > 2$<br>C. $3x + 2y > 5$<br>D. $3x - 2y < 2$                                                                       |
| 8  | Optimal solution is found by evaluation the objective function at                                                                 | A. All point of feasible region<br>B. Corner point<br>C. Origin<br>D. None                                                                     |
| 9  | The solution set of the inequality $ax + by < c$ is                                                                               | A. straight line<br>B. half plane<br>C. parabola<br>D. none of these                                                                           |
| 10 | $3x + 4 = 0$ is                                                                                                                   | A. not inequality<br>B. equation<br>C. identity<br>D. inequality                                                                               |
| 11 | The point _____ is in the solution of the inequality $4x - 3y < 2$                                                                | A. $(0,1)$<br>B. $(2,1)$<br>C. $(2,2)$<br>D. $(3,3)$                                                                                           |
| 12 | A point of a solution region where two of its boundary lines intersect, is called                                                 | A. Boundary<br>B. Inequality<br>C. Half plane<br>D. Vertex                                                                                     |
| 13 | $(0,1)$ is in the solution of the inequality                                                                                      | A. $3x + 2y > 8$<br>B. $2x - 3y < 4$<br>C. $2x + 3y > 5$<br>D. $x - 2y < -5$                                                                   |
| 14 | The graph of $y < 2$ is the                                                                                                       | A. Left half plane<br>B. upper half plane<br>C. Right half plane<br>D. Lower half plane                                                        |
| 15 | $x = \underline{\hspace{2cm}}$ is in the solution of $2x + 3 < 0$                                                                 | A. 0<br>B. 2<br>C. -1<br>D. -2                                                                                                                 |

16  $3x + 4 \geq 0$  is

- A. equation
- B. inequality
- C. identity
- D. none of these

17 The graph of the linear equation of the form  $ax = by = c$  is a line which divided the plane into:

- A. Two similar regions
- B. Two disjoint regions
- C. Four equal parts
- D. One region

18 The feasible region which can be enclosed within a circle is called

- A. Bounded region
- B. Convex region
- C. Unbounded region
- D. None

19 For which of the following ordered pairs  $(s, t)$  is  $s + t > 2$  and  $s - t < -3$ ?

- A.  $(3, 2)$
- B.  $(2, 3)$
- C.  $(1, 8)$
- D.  $(0, 3)$

20 An expression involving any of the symbols  $<$ ,  $>$ ,  $\leq$  or  $\geq$  is called

- A. equation
- B. inequality
- C. linear equation
- D. identity