

ECAT Chemistry MCQ's Test For Full Book

Sr	Questions	Answers Choice
1	Question Image	A. Complete conversion of A to B has taken place B. Conversion of A to B is only 50% complete C. Only 10% conversion of A to B has taken place D. The rate of transformation of A to B is just equal to rate of transformation of B to A in the system
2	Cl ₂ reacts with CS ₂ in presence of AlCl ₃ to form	A. CHCl ₃ B. CCl ₄ C. C ₂ H ₅ Cl D. C ₂ H ₆
3	Fluorine molecule is formed by	A. The axial p-p overlap B. The sidewise p-p overlap C. The axial s-p overlap D. The overlap of two sp ² hybrid orbitals
4	Question Image	A. Treatment with HCN followed by acid hydrolysis B. Oxidation of acetaldehyde followed by basic hydrolysis C. Treatment with HCN followed by reduction D. Treatment with HCN followed by oxidation
5	In solids, the temperature of is the measure of	A. Rotational kinetic energies B. transnational kinetic energies C. Vibrationalkinetic energies D. None of the above
6	Grignard's reagent is	A. Alkyl halide B. Magnesium halide C. Alkyl magnesium halide D. Ethereal solution of an alkyl halide
7	The number of groups in the periodic table is	A. 6 B. 7 C. 8 D. 9
8	Sp ³ hybridization occurs when carbon is bound to	A. Four other atoms B. Three other atoms C. Two other atoms D. One other atoms
9	Given date (i) heat of neutralization of HCl and NaOH is -57.3 KJ mole ⁻¹ (ii) heat of neutralization of $\mathrm{CH_3COOH}$ with NaOH is 55.2 KJ mole ⁻¹ The enthalpy of ionization of $\mathrm{CH_3COOH}$ is a determined according to Hess's law by	A. Adding i and ii B. Dividing i by ii C. Subtracting i from ii D. Subtracting ii from i
10	Across the lanthanide series, the basicity of the lanthanide hydroxides	A. Increases B. Decreases C. First increases and then decreases D. First decreases and then increases

11	The boiling point of an a zeotropic mixture of water and ethye alcohol is less than that of water and alcohol. The mixture shows	A. That solution is highly saturated B. No deviation from Raoult's law C. Positive deviation from Raoult's law D. Negative deviation from Raoult's law
12	For the above reaction the relationship b/w k_{C} and k_{p} will be :	A. K _p = K _c RT <o:p></o:p> B. Kp = K _c (RT) ₋₁ <o:p></o:p> C. K _p = K _c (RT) ₋₂ (P) D. K _p = K _c (RT) ₋₂ <o:p></o:p> D. K _c = K _p
13	Nobel gases are placed group:	A. Group IV-A B. Group V-A C. Group VI-A D. Group VII-A
14	The raw materials for the manufacture of urea fertilizer is	A. Hydrogen and ammonia B. Steam, methane, ammonia C. Methane and air D. None of these
15	"Each different compound should have a different name" was published by IUPAC system of nomenclature in	A. 1892 B. 1830 C. 1947 D. 1979
16	Which one of the following gases is used for artificial ripening of fruits?	A. Ethane B. Ethyne C. Methane D. Propane
17	Elimination bimolecular reactions usually obey	A. First order kinetics B. Second order kinetics C. Third order kinetics D. Zero order kinetics
18	A nuclophile must	A. Be an atom B. A group of atoms C. Have a lone pair D. Be negatively charged
19	The formula of calcium superphosphate is	A. CaHPO ₄ B. CaH ₂ PO ₄ C. Ca(H ₂ PO ₄) ₂ D. None of these
20	Which one of the following particles has amass 1/1836 time, that of hydrogen?	A. Neutron. B. Proton. C. Electron. D. Positron.

......