

ECAT Chemistry Chapter 10 Electrochemistry

Sr	Questions	Answers Choice
1	In KO_2 the oxidation state of oxygen is	A. -2 B. -1 C. $+1/2$ D. $-1/2$
2	Which of the following correctly describes the process occurring at the electrodes when molten $NaCl$ is electrolyzed:	A. No reaction at anode, reduction at cathode. B. No reaction at cathode, oxidation at anode. C. Oxidation at anodes, reduction at cathode. D. Oxidation at cathode, reduction at anode.
3	What will be the weight of deposited silver on passing 965 coulombs of electricity in solution of $AgNO_3$?	A. 1.08 g B. 2.16 g C. 0.54 g D. 0.27 g
4	A dry alkaline cell has porous Zn anode and MnO_2 as cathode the electrolyte used is	A. $Ca(OH)_2$ B. $NaOH$ C. KOH D. NH_4OH
5	In electronic watches or electronic calculators the tiny batteries used are	A. Alkaline battery B. NICAD battery C. Fuel cell D. Silver oxide battery
6	The function of salt bridge is :	A. To increase movement onions. B. To increase the emf of cell. C. To decrease the temperate D. To maintain electrical neutrality
7	K, Ca and Li metals may be arranged in decreasing order of their reduction potential as :	A. Li, k, Ca B. Ca, K, Li C. Li, Ca, K D. K, Ca, Li
8	The specific conductance of 0.1 M $NaCl$ solution is $1.06 \times 10^{-2} \text{ ohm}^{-1} \text{ mol}^{-1}$. Its molar conductance in $\text{ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ is	A. 1.06×10^2 B. 1.06×10^3 C. 1.06×10^4 D. 53
9	In a solution of $CuSO_4$ how much time will be required to precipitate 2g copper by 0.5 ampere current?	A. 12157.48 sec B. 102 sec C. 510 sec D. 642 sec
10	Question Image	A. Zn B. H C. S D. O
11	A cell in which electric current is produced as a result spontaneous redox reaction is called :	A. Dry cell B. Electrolytic cell C. Galvanic cell D. Standard cell
12	When a metal is dipped in 1 molar of its solution at 298 K. then potential set up is called	A. Standard electrode potential B. Electric charge C. Ionization potential D. Electroplating
13	The specific conductance of a 0.1 N KCl solution at $23^\circ C$ is $0.012 \text{ ohm}^{-1} \text{ cm}^{-1}$. The resistance of cell containing the solution at the same temperature was found to be 55 ohm. The cell constant will be	A. 0.142 cm^{-1} B. 0.66 cm^{-1} C. 0.916 cm^{-1} D. 1.12 cm^{-1}
14	When during electrolysis of a solution of $AgNO_3$, 9650 coulombs of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be	A. 1.08 g B. 10.8 g C. 21.6 g D. 108 g

15	Sodium can be obtained by :	A. Electrolysis of acidified water. B. By heating NaCl and water at 100° C C. Electrolysis of molten sodium chloride. D. Electrolysis of aqueous sodium chloride.
16	The value of SHE is cathode and anode is always taken to be	A. One B. Zero C. Different D. Same
17	An electrochemical cell is based upon	A. Acid-base reaction B. Redox reaction C. Nuclear reaction D. None of the above
18	When aqueous solution of NaOH is electrolysed using graphite electrodes, the product obtained at anode is	A. O_{2} gas B. H_{2} gas C. Na metal D. Na_2O
19	Fe can displace Cu from $CuSO_4$ solution because	A. Fe is ferromagnetic B. Fe is below Cu in electrochemical series C. Fe is above Cu in electrochemical series D. Fe exists in divalent oxidation state
20	Calculate the amount of charge flowing in 2 minute in a wire of resistance 10Ω when a potential difference of 20 V is applied	A. 120 C B. 240 C C. 20 C D. 4 C